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Abstract. We investigate the equivalence between Thirring model and sine-Gordon model in the chirally
broken phase of the Thirring model. This is unlike all other available approaches where the fermion fields
of the Thirring model were quantized in the chiral symmetric phase. In the path integral approach we
show that the bosonized version of the massless Thirring model is described by a quantum field theory
of a massless scalar field and exactly solvable, and the massive Thirring model bosonizes to the sine-
Gordon model with a new relation between the coupling constants. We show that the non-perturbative
vacuum of the chirally broken phase in the massless Thirring model can be described in complete analogy
with the BCS ground state of superconductivity. The Mermin–Wagner theorem and Coleman’s statement
concerning the absence of Goldstone bosons in the 1+ 1-dimensional quantum field theories are discussed.
We investigate the current algebra in the massless Thirring model and give a new value of the Schwinger
term. We show that the topological current in the sine-Gordon model coincides with the Noether current
responsible for the conservation of the fermion number in the Thirring model. This allows one to identify
the topological charge in the sine-Gordon model with the fermion number.

1 Introduction

In 1 + 1-dimensional space-time there are two non-
trivial minimal quantum field theories which describe non-
perturbative phenomena: the sine-Gordon (SG) model [1]
and the Thirring model [2]. The SG model is a quan-
tum field theory of a single scalar field ϑ(x) self-coupled
through the dynamics determined by the Lagrangian [3]1

L(x) = 1
2
∂µϑ(x)∂µϑ(x) +

α

β2 (cosβϑ(x)− 1), (1.1)

where α and β are real positive parameters [3]. The La-
grangian (1.1) is invariant under the transformations

ϑ(x)→ ϑ′(x) = ϑ(x) +
2πn
β
, (1.2)

where n is an integer number running over n = 0, ±1, ±2,
. . .
The most interesting property of the SG model is the

existence of classical, stable solutions of the equations of
a e-mail: faber@kph.tuwien.ac.at
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c Permanent address: State Technical University, Depart-

ment of Nuclear Physics, 195251 St. Petersburg, Russian Fed-
eration

1 Below we follow Coleman’s notation [3]

motion – solitons and anti-solitons [1]. Solitons can annihi-
late with anti-solitons. Many-soliton solutions obey Pauli’s
exclusion principle. As pointed out by Skyrme [4] this can
be interpreted as a fermion-like behavior.
In turn, the Thirring model [2] is a theory of a self-

coupled Dirac field ψ(x) [2,3]

L(x) = ψ̄(x)(iγµ∂µ −m)ψ(x)

− 1
2
gψ̄(x)γµψ(x)ψ̄(x)γµψ(x), (1.3)

where m is the mass of the fermion field and g is a dimen-
sionless coupling constant. The field ψ(x) is a spinor field
with two components ψ1(x) and ψ2(x). The γ matrices are
defined in terms of the well-known 2 × 2 Pauli matrices
σ1, σ2 and σ3

γ0 = σ1, γ1 = −iσ2, γ5 = γ0γ1 = −iσ1σ2 = σ3.(1.4)

These γ matrices obey the standard relations

γµγν + γνγµ = 2gµν ,
γµγ5 + γ5γµ = 0. (1.5)

We use the metric tensor gµν defined by g00 = −g11 = 1
and g01 = g10 = 0. The axial-vector product γµγ5 can be
expressed in terms of γν

γµγ5 = −εµνγν , (1.6)
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where εµν is the anti-symmetric tensor defined by ε01 =
−ε10 = 1. Further, we also use the relation γµγν = gµν +
εµνγ5.
The Lagrangian (1.3) is obviously invariant under

UV(1) transformations

ψ(x) V−→ ψ′(x) = eiαVψ(x). (1.7)

For m = 0 the Lagrangian (1.3) is invariant under the
chiral group UV(1)× UA(1)

ψ(x) V−→ ψ′(x) = eiαVψ(x),

ψ(x) A−→ ψ′(x) = eiαAγ
5
ψ(x), (1.8)

where αV and αA are real parameters defining global ro-
tations.
As has been shown in [5,6] the massless Thirring model

can be exactly solved in the sense that all correlation
functions can be calculated explicitly. The solution of the
massless Thirring model has been obtained in the tradi-
tional quantum field theoretic way by Klaiber [5] within
the operator technique and within the path integral ap-
proach by Furuya, Gamboa Saravi and Schaposnik [6]
by using the technique of auxiliary vector fields. Within
the path integral approach and without the introduction
of auxiliary vector fields Fröhlich and Marchetti [7] have
shown that the evaluation of the Green functions in the
massless Thirring model runs parallel to the evaluation
of the Green functions in the quantum field theory of a
massless scalar field coupled to external sources via SG
model-like couplings.
The problem of the equivalence between the SG and

the Thirring model has a long history. The first discussion
of this topic has been started by Skyrme [4] and contin-
ued by Coleman [3] and Mandelstam [8]. Skyrme argued
that the soliton modes of the SG model possess the prop-
erties of fermion fields and couple through an interaction
of Thirring model type. Coleman suggested a perturbative
approach to the understanding of the equivalence between
the SG and the Thirring model. He developed a perturba-
tion theory with respect to α and m in order to compare
the n-point Green functions in the SG and the massive
Thirring model in coordinate representation. Under the
assumption of the existence of these two theories in the
strict sense of constructive quantum field theory, Coleman
concluded that they should be equivalent if the coupling
constants β and g obey the relation [3]

4π
β2 = 1 +

g

π
(1.9)

and the operators ψ(x) and ϑ(x) satisfy the Abelian
bosonization rules [3]

Zmψ̄(x)
(
1∓ γ5

2

)
ψ(x) = − α

β2 e
±iβϑ(x), (1.10)

where the constant Z depends on the regularization [3].
The results obtained by Coleman are fully based on the so-
lution of the massless Thirring model given by Klaiber [5]

and recovered in a pure Euclidean formulation by Fröhlich
and Marchetti [7].
Unlike Coleman’s analysis dealing with Green func-

tions, i.e. matrix elements of some products of field oper-
ators, Mandelstam has undertaken an attempt of an ex-
plicit derivation of the operators being functionals of the
scalar field of the SG model and possessing the proper-
ties of the fermionic field operators. Mandelstam identi-
fied these operators with the interpolating operators of
Thirring fields and showed that these fermionic operators
have a Lagrangian of the Thirring model type.
Recently, another approach to the derivation of the

equivalence between the SG and the Thirring model was
developed by Damgaard, Nielsen and Sollacher [9] and
Thomassen [10] within the so-called smooth bosonization
approach based on the path integral method and using an
enlarged set of field variables. In the smooth bosonization
approach this enlargement of field variables appears via
local chiral rotations [11], where the local chiral phase is
identified with a local pseudoscalar field. Its Lagrangian
is determined by the Jacobian of the fermion path inte-
gral measure depending explicitly on a local chiral phase
[12–17].
The common point of all approaches to the solution of

the massless Thirring model [5–7] and to the derivation of
the equivalence between the SG and the massive Thirring
model [3,9,10] is a quantization of the fermionic system
around the trivial perturbative vacuum.
In order to justify our statement we suggest to fol-

low the procedure used by Nambu and Jona–Lasinio [18].
Let us consider the massless Thirring model defined by
the Lagrangian (1.3) at m = 0. Then, following Nambu
and Jona–Lasinio we supplement and subtract the term
Mψ̄(x)ψ(x), where M is an arbitrary parameter with the
meaning of the dynamical mass of fermions. That is sim-
ilar to the Hartee–Fock approximation where a two-body
interaction is approximated by a one-body term. The La-
grangian of the massless Thirring model acquires the form

L(x) = ψ̄(x)(iγµ∂µ −M)ψ(x) + Lint(x), (1.11)

with the interaction Lint(x) given by

Lint(x) = Mψ̄(x)ψ(x)

−1
2
gψ̄(x)γµψ(x)ψ̄(x)γµψ(x). (1.12)

Following the Nambu–Jona–Lasinio prescription one can
show that the dynamical mass M satisfies the gap equa-
tion

M = gγµ(−i)SF(0)γµ

= gγµ
∫

d2p
(2π)2i

1
M − p̂

γµ

= M
g

2π
ln
(
1 +

Λ2

M2

)
, (1.13)
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where Λ is an ultra-violet cut-off. Thus the gap equation
reads2

M =M
g

2π
ln
(
1 +

Λ2

M2

)
. (1.14)

There are two solutions of this equation: M = 0 and

M =
Λ√

e2π/g − 1
. (1.15)

The M = 0 solution is trivial and corresponds to a chiral
symmetric phase with a trivial perturbative vacuum. In
turn, the M �= 0 solution (1.15) is non-trivial and is re-
lated to the chirally broken phase with a non-perturbative
vacuum. This chirally broken phase is characterized by the
appearance of dynamical fermions with a dynamical mass
M and ψ̄ψ pairing [18]. By retracing [3,5–11] it becomes
obvious that all results obtained there can be assigned
to the M = 0 solution characterizing the quantization of
fermion fields around the trivial perturbative vacuum.
In order to show that the chirally brokenM �= 0 phase

of the Thirring model is more preferable than the chiral
symmetric M = 0 phase we have to calculate the energy
density of the vacuum state E(M). This can be carried out
only by using the exact expression for the wave function
of the non-perturbative vacuum. In Sect. 6 we show that
the wave function of the non-perturbative vacuum in the
massless Thirring model can be taken in the form of the
wave function of the ground state in the Bardeen–Cooper–
Schrieffer (BCS) theory of superconductivity [23] (see also
[18,22,24]). The energy density E(M) calculated in Sect. 6
has a minimum at M �= 0 that satisfies the gap equation
(1.14) and a maximum at M = 0. This is evidence that
for the Thirring fermions the chirally broken phase is en-
ergetically preferable with respect to the chiral symmetric
phase.
It is well known that the chirally broken phase is char-

acterized by a non-zero value of the fermion condensate,
〈0|ψ̄(0)ψ(0)|0〉 �= 0. In the massless Thirring model the
fermion condensate is defined by

〈0|ψ̄(x)ψ(x)|0〉one loop = itr{SF(0)} = −M

2π
ln
(
1 +

Λ2

M2

)

= −M
g
, (1.16)

where we have taken into account the gap equation (1.14).
Below we denote the fermion condensate (1.16) cal-

culated in the one-fermion loop approximation by 〈ψ̄ψ〉,
〈0|ψ̄(x)ψ(x)|0〉one loop = 〈ψ̄ψ〉 = −M/g.
Since the massless Thirring model possesses the same

non-perturbative properties as the Nambu–Jona–Lasinio

2 We would like to accentuate that the gap equation is cal-
culated in the one-fermion loop approximation. As has been
shown in [19–22] the effective Lagrangian of a bosonized version
of a fermion system self-coupled via a four-fermion interaction
is defined by a functional determinant that can be represented
in terms of an infinite series of one-fermion loop diagrams

model [18], we suggest to recast the four-fermion interac-
tion of the Thirring model into the form given by Nambu
and Jona–Lasinio. After a Fierz transformation

−ψ̄(x)γµψ(x)ψ̄(x)γµψ(x)
= (ψ̄(x)ψ(x))2 + (ψ̄(x)iγ5ψ(x))2, (1.17)

the Lagrangian (1.3) acquires the form

L(x) = ψ̄(x)(iγµ∂µ −m)ψ(x)

+
1
2
g
[
(ψ̄(x)ψ(x))2 + (ψ̄(x)iγ5ψ(x))2

]
. (1.18)

In this form the Thirring model coincides with the
Nambu–Jona–Lasinio (NJL) model in 1 + 1-dimensional
space-time. It is well known that the NJL model is
a relativistic covariant generalization of the BCS the-
ory of superconductivity. The wave function of the non-
perturbative vacuum of the NJL model coincides with the
wave function of the ground state in the BCS theory [23].
The main aim of this article is to solve the massless

Thirring model in the chirally broken phase and to de-
rive the equivalence with the SG model. We also want
to show explicitly that this is possible without an enlarge-
ment of the number of degrees of freedom but via a reduc-
tion of them. In fact, in the Thirring model the fermion
field has two independent degrees of freedom. Since the
SG model describes a scalar field with only one degree of
freedom, one of the two fermion degrees of freedom should
die out. How this goes dynamically in a non-perturbative
way should be the matter of our investigation.
In this way it is rather useful to follow the approach de-

veloped in [19–22] for the derivation of effective chiral La-
grangians in the extended Nambu–Jona–Lasinio (ENJL)
model with chiral U(3) × U(3) symmetry [19–21] and
the effective Lagrangian in the monopole Nambu–Jona–
Lasinio model with magnetic U(1) symmetry [22].
This paper is organized as follows. In Sect. 2 we dis-

cuss Coleman’s derivation of the equivalence between the
massive Thirring model and the SG model. In Sect. 3 we
bosonize the massless Thirring model. We show that the
bosonized version of the massless Thirring model is a
quantum field theory of a free massless scalar field. In
Sect. 4 we evaluate the generating functional of Green
functions in the massless Thirring model and show that
any Green function in the massless Thirring model can be
expressed in terms of vacuum expectation values of the op-
erators e±iβϑ(x), where ϑ(x) is a massless scalar field with
values 0 ≤ ϑ(x) ≤ 2π. Using a trivial cut-off regulariza-
tion of the massless ϑ field in the infrared region we obtain
results that coincide with those derived by Klaiber, Cole-
man, Fröhlich and Marchetti, but give another relation
between the coupling constant β and g than that given by
Coleman [3]. The problem of the vanishing of the fermion
condensate averaged over the ϑ field fluctuations is accen-
tuated. The solution of this problem is discussed in Sect. 8.
In Sect. 5 we bosonize the massive Thirring model. We
show that the bosonized version of the massive Thirring
model is just the SG model. We express the parameters
of the SG model in terms of the parameters of the mas-
sive Thirring model. In Sect. 6 we investigate the massless
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Thirring model in the operator formulation. We analyze
the normal ordering of the fermionic operators and chiral
symmetry breaking, the equations of motion for fermion
fields, the current algebra and the energy-momentum ten-
sor. We discuss the phenomenon of spontaneous breaking
of chiral symmetry in the massless Thirring model from
the point of view of the BCS theory of superconductivity.
We use the exact expression for the wave function of the
non-perturbative vacuum and calculate the energy density
of this non-perturbative vacuum state. We show that the
energy density of the non-perturbative vacuum acquires a
minimum just, when the dynamical mass M of fermions
satisfies the gap equation (1.14). Then, we show that the
Schwinger term calculated for the fermion system in the
chirally broken phase becomes depending on the coupling
constant g. In Sect. 7 we show that the topological current
of the SG model coincides with the Noether current of the
massive Thirring model related to the invariance under
global UV(1) rotation. As far as this Noether current is
responsible for the conservation of the fermion number
in the massive Thirring model, the topological charge of
soliton solutions of the SG model inherits the meaning of
the fermion number. This proves Skyrme’s statement [4]
that the SG model solitons can be interpreted as massive
fermions. In Sect. 8 we discuss the spontaneous breaking
of chiral symmetry in the massless Thirring model, the
Mermin–Wagner theorem [25] about the vanishing of long-
range order in two-dimensional quantum field theories and
Coleman’s statement concerning the absence of Goldstone
bosons in the 1 + 1-dimensional quantum field theory of
a massless scalar field. We show that in our approach the
problem of the vanishing of the fermion condensate aver-
aged over the ϑ field fluctuations can be solved by means
of dimensional and analytical regularization. We give the
solution of the massless Thirring model in the sense of
an explicit evaluation of any correlation function. In the
Conclusion we discuss our results. In AppendixA we cal-
culate the Jacobian caused by local chiral rotations and
show that by using an appropriate regularization scheme
this Jacobian can be equal to unity. In AppendixB we
demonstrate the stability of the chirally broken phase un-
der fluctuations of the radial scalar field around the min-
imum of the effective potential calculated in Sect. 3. We
show that the radial scalar field fluctuating around the
minimum of the effective potential is decoupled from the
system. In AppendixC we give a classical solution of the
equations of motion of the massless Thirring model for
the ansatz discussed in Sect. 6. In AppendixD we give a
detailed description of free massive and massless fermion
fields in 1 + 1-dimensional space-time.

2 On Coleman’s analysis of equivalence

In this section we would like to repeat Coleman’s deriva-
tion of the equivalence between the massive Thirring
model and the SG model within the path integral ap-
proach. Let ZSG and ZTh be the partition functions of
the SG and the massive Thirring model defined by

ZSG =
∫

Dϑ exp i
∫
d2x

{
1
2
∂µϑ(x)∂µϑ(x)

+
α

β2 (cosβϑ(x)− 1)
}
,

ZTh =
∫

DψDψ̄

× exp i
∫
d2x

{
ψ̄(x)(iγµ∂µ −m)ψ(x)

− 1
2
gψ̄(x)γµψ(x)ψ̄(x)γµψ(x)

}
. (2.1)

Formally, in order to get convinced that the SG and the
massive Thirring model are equivalent it is sufficient to
show that ZSG = ZTh. Coleman suggested to prove this
relation perturbatively. For this aim he developed pertur-
bation theories with respect to α and m [3]. According to
Coleman we have to expand the partition functions with
respect to the interaction terms [3]:

LSG
int (x) =

α

β2 cosβϑ(x) =
α

2β2 (A+(x) +A−(x)),

LTh
int(x) = −mψ̄(x)ψ(x) = −m(σ+(x) + σ−(x)), (2.2)

where [3]

A±(x) = e±iβϑ(x),

σ±(x) = ψ̄(x)
(
1± γ5

2

)
ψ(x). (2.3)

In terms of the components ψ1(x) and ψ2(x) the fermion
densities σ±(x) are defined by σ+(x) = ψ†

2(x)ψ1(x) and
σ−(x) = ψ†

1(x)ψ2(x).
The expansions for the partition functions in powers

of α and m read

ZSG =
∞∑
n=0

in

n!

(
α

2β2

)n ∫
Dϑ exp i

∫
d2x

×
{
1
2
∂µϑ(x)∂µϑ(x)

}∫ ∫
. . .

∫
d2x1d2x2 . . .d2xn

×
n∏
k=1

(A+(xk) +A−(xk)),

ZTh =
∞∑
n=0

in

n!
(−m)n

∫
DψDψ̄ exp i

∫
d2x

×
{
ψ̄(x)iγµ∂µψ(x)− 1

2
gψ̄(x)γµψ(x)ψ̄(x)γµψ(x)

}

×
∫ ∫

. . .

∫
d2x1d2x2 . . .d2xn

×
n∏
k=1

(σ+(xk) + σ−(xk)). (2.4)
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Every term of these expansions corresponds to a vacuum
expectation value of a massless free scalar field ϑ(x)3 and
a massless self-coupled fermion field ψ(x).
A general term of ZSG can be taken in the form [3]〈

0

∣∣∣∣∣∣T

 p∏
k=1

A+(xk)
n∏
j=1

A−(yj)



∣∣∣∣∣∣ 0
〉

=
∫

Dϑe−i(1/2)
∫

d2xϑ(x)(✷+µ2)ϑ(x)

×
p∏
k=1

A+(xk)
n∏
j=1

A−(yj), (2.5)

where µ is an infrared cut-off regularizing the free massless
ϑ field in the infrared region. The vacuum expectation
value (2.5) should be taken in the limit µ → 0 [3].
The evaluation of this Gaussian path integral is rather

straightforward. The result reads〈
0

∣∣∣∣∣∣T

 p∏
i=1

A+(xi)
n∏
j=1

A−(yj)



∣∣∣∣∣∣ 0
〉

= exp
{
1
2
β2(p+ n)i∆(0)

}
exp


β2

p∑
j<k

i∆(xj − xk)

+β2
n∑
j<k

i∆(yj − yk)− β2
p∑
j=1

n∑
k=1

i∆(xj − yk)


 , (2.6)

where the Green function ∆(x− y) is determined by [3]

∆(x− y) = i〈0|T (ϑ(x)ϑ(y))|0〉 (2.7)

and obeys the equation [3]

(✷+ µ2)∆(x− y) = δ(2)(x− y). (2.8)

In the limit µ → 0 the Green function ∆(x−y) is given
by the expression [3]

∆(x− y) = − i
4π
ln[−µ2(x− y)2]. (2.9)

Using the explicit form of the Green function (2.9) the
vacuum expectation value (2.6) transforms to〈

0

∣∣∣∣∣∣T (
p∏
k=1

A+(xk)
n∏
j=1

A−(yj))

∣∣∣∣∣∣ 0
〉

= exp
{
1
2
β2(p+ n)i∆(0)

}
(2.10)

×

p∏
j<k

[−µ2(xj − xk)2]β
2/4π

n∏
j<k

[−µ2(yj − yk)2]β
2/4π

∏p
j=1

∏n
k=1[−µ2(xj − yk)2]β

2/4π ,

3 Of course, in reality the ϑ field is a massless pseudoscalar
field. As we show below (see also [3,6–16]) it is related to a
chiral phase of a fermion field. Since we will not use the prop-
erties of the ϑ field under parity transformations, further on
we call it for simplicity a massless scalar field

in agreement with Coleman’s result (see (4.11) of [3]).
In the limit µ2 → 0 this vacuum expectation value

behaves like〈
0

∣∣∣∣∣∣T

 p∏
k=1

A+(xk)
n∏
j=1

A−(yj)



∣∣∣∣∣∣ 0
〉

∼ (µ2)(p−n)
2β2/8π

(2.11)

and vanishes if p �= n [3]. An analogous evaluation of the
vacuum expectation value (2.5) has been carried out by
Fröhlich and Marchetti [7].
We would like to accentuate that the evaluation of

the vacuum expectation value (2.10) has been carried
out with respect to the trivial perturbative vacuum with
〈ϑ(x)〉 = 0 and with the trivial two-point Green function
(2.9). Therefore, no non-perturbative properties of the SG
model caused by the existence of non-trivial soliton states
are involved.
Now let us turn to the evaluation of the partition func-

tion ZTh. From (2.4) one can see that every term of the
expansion in powers of m is related to the vacuum ex-
pectation value of a product of operators of massless self-
coupled fermion fields ψ(x) and ψ̄(x)〈

0

∣∣∣∣∣T
(
n∏
k=1

σ−(xk)σ+(yk)

)∣∣∣∣∣ 0
〉

(2.12)

=

〈
0

∣∣∣∣∣T
(
n∏
i=1

[ψ†
1(xi)ψ2(xi)][ψ

†
2(yi)ψ1(yi)]

)∣∣∣∣∣ 0
〉
.

For the evaluation of these vacuum expectation values
Coleman has decided to follow as close as possible the
results obtained by Klaiber in his lectures [5]. According
to Klaiber’s statement the massless Thirring model can
be reduced to a quantum field theory of a massless free
fermion field Ψ(x) by a corresponding canonical transfor-
mation of the self-coupled fermion field ψ(x) → Ψ(x) [5].
The two-point Green function SF(x− y) of the free mass-
less field Ψ(x) is defined by [5]

SF(x− y) = i〈0|T (Ψ(x)Ψ̄(y))|0〉 = 1
2π

x̂− ŷ

(x− y)2
, (2.13)

where x̂ − ŷ = γµ(x − y)µ. We would like to emphasize
that the fermion condensate, determined in the usual way,
is equal to zero:

lim
y→x i〈0|T (Ψ̄(y)Ψ(x))|0〉 = − lim

y→x tr[SF(x− y)]

= 0. (2.14)

This shows clearly that fermion fields are quantized
around the trivial perturbative vacuum.
The result of the calculation of the vacuum expecta-

tion value (2.12) was obtained by Klaiber [5] and used by
Coleman [3] in the form〈

0

∣∣∣∣∣T
(
n∏
k=1

σ−(xk)σ+(yk)

)∣∣∣∣∣ 0
〉

(2.15)
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∼

p∏
j<k

[−µ̄2(xj − xk)2]1+b/π
n∏
j<k

[−µ̄2(yj − yk)2]1+b/π

n∏
j=1

n∏
k=1

[−µ̄2(xj − yk)2]1+b/π
,

where µ̄ is an arbitrary scale and the parameter b is given
by [3,5]

1 +
b

π
=

1

1 +
g

π

. (2.16)

The comparison of (2.10) for p = n with (2.15) led Cole-
man to the relation between the coupling constants given
by (1.9) at µ̄ ∼ µ [3].
The evaluation of the Green functions in the massless

Thirring model carried out by Klaiber within the oper-
ator technique was then confirmed by Furuya, Gamboa
Saravi and Schaposnik within the path integral approach
supplemented by the method of auxiliary vector fields [6].
Thus, we have to emphasize that the fermion fields in

Coleman’s derivation of the equivalence between the SG
and the Thirring model have been obviously quantized
around the trivial perturbative vacuum in the chiral sym-
metric phase. Therefore, it is not a surprise that Coleman’s
relation between coupling constants differs from our rela-
tion valid for fermion fields quantized around a non-trivial,
non-perturbative vacuum in the chirally broken phase.

3 Bosonization
of the massless Thirring model

Within our approach to the equivalence between the SG
and the Thirring model we suggest to start, first, with
the massless Thirring model and bosonize it by integrat-
ing over fermionic degrees of freedom. We consider the
partition function

ZTh =
∫

DψDψ̄ exp i
∫
d2x

{
ψ̄(x)iγµ∂µψ(x)

− 1
2
gψ̄(x)γµψ(x)ψ̄(x)γµψ(x)

}
. (3.1)

After a Fierz transformation of the four-fermion interac-
tion we get

ZTh =
∫

DψDψ̄ exp i
∫
d2x

{
ψ̄(x)iγµ∂µψ(x)

+
1
2
g[(ψ̄(x)ψ(x))2 + (ψ̄(x)iγ5ψ(x))2]

}
. (3.2)

Collective ψ̄ψ excitations, a local scalar field σ(x) and a
pseudoscalar ϕ(x) can be introduced in the theory as usual
[18–22]

ZTh =
∫

DψDψ̄DσDϕ

× exp i
∫
d2x

{
ψ̄(x)iγµ∂µψ(x)− ψ̄(x)(σ(x)

+ iγ5ϕ(x))ψ(x)− 1
2g
[σ2(x) + ϕ2(x)]

}
. (3.3)

Integrating over fermionic degrees of freedom we recast
the integrand into the form

ZTh =
∫

DσDϕDet(iγµ∂µ − σ − iγ5ϕ)

× exp i
∫
d2x

{
− 1
2g
[σ2(x) + ϕ2(x)]

}
. (3.4)

This reduces the problem of the bosonization of the mass-
less Thirring model to the evaluation of the functional
determinant

Det(iγµ∂µ − σ − iγ5ϕ). (3.5)

This determinant is related to the effective Lagrangian in
the usual way

Det(iγµ∂µ − σ − iγ5ϕ)

= expTr ln(iγµ∂µ − σ − iγ5ϕ)

= exp i
∫
d2x(−i)tr〈x| ln(iγµ∂µ − σ − iγ5ϕ)|x〉

= exp i
∫
d2xL̃eff(x), (3.6)

where

L̃eff(x) = (−i)tr〈x| ln(iγµ∂µ − σ − iγ5ϕ)|x〉. (3.7)

First, let us drop the contribution of gradients ∂µσ and
∂µϕ and evaluate the effective potential Ṽ [σ(x), ϕ(x)] =
−L̃eff(x)|∂µσ=∂µϕ=0.
Dropping the contribution of the gradients ∂µσ and

∂µϕ, the evaluation of the functional determinant (3.5)
runs in the following way

Det(iγµ∂µ − σ − iγ5ϕ)|∂µσ=∂µϕ=0

= Det(✷+ Φ†Φ)

= exp i
∫
d2x(−i)tr〈x| ln(✷+ Φ†Φ)|x〉

= exp i
∫
d2x

∫
d2k
(2π)2i

ln(−k2 + Φ†(x)Φ(x))

= exp i
∫
d2x

∫
d2kE
(2π)2

ln(k2E + Φ
†(x)Φ(x)), (3.8)

where Φ(x) = σ(x) + iϕ(x) and kE is the 2-momentum
in Euclidean momentum space obtained from the 2-
momentum k in Minkowski momentum space by means
of a Wick rotation k0 = ik2 [29]. The effective potential
defined by the functional determinant (3.8) amounts to
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−Ṽ [σ(x), ϕ(x)]
= L̃eff(x)|∂µσ=∂µϕ=0

=
∫
d2kE
(2π)2

ln(k2E + Φ
†(x)Φ(x))

=
1
4π
[(Λ2 + Φ†(x)Φ(x)) ln(Λ2 + Φ†(x)Φ(x))

−Φ†(x)Φ(x) lnΦ†(x)Φ(x)− Λ2]. (3.9)

This result can be obtained differently by representing the
effective Lagrangian (3.7) in terms of one-fermion loop
diagrams [22]. Denoting Φ̃ = σ + iγ5ϕ we get [22]

L̃eff(x) = −itr
〈
x
∣∣∣ln(iγµ∂µ − Φ̃

)∣∣∣x〉
= −itr〈x| ln(iγµ∂µ)|x〉

+
∞∑
n=1

i
n
tr
〈
x

∣∣∣∣
(

1
iγµ∂µ

Φ̃

)n∣∣∣∣x
〉

= −itr〈x| ln(iγµ∂µ)|x〉+
∞∑
n=1

L̃(n)
eff (x), (3.10)

where the effective Lagrangian L̃(n)
eff (x) is defined by [22]

L̃(n)
eff (x) =

∫ n−1∏
�

d2x�d2k�
(2π)2

e−ik1·x1−ik2·x2−...−ikn·x

×
(

− 1
n

1
4π

)∫
d2k
πi
tr
{
1

k̂
Φ̃(x1)

1

k̂ + k̂1
Φ̃(x2)

. . . Φ̃(xn−1)
1

k̂ + k̂1 + . . .+ k̂n−1
Φ̃(x)

}
(3.11)

at k1 + k2 + . . .+ kn = 0.
Dropping the momenta ki(i = 1, 2, . . . , n − 1) giving

the contributions of the gradients ∂µσ and ∂µϕ in the
effective Lagrangian we recast L̃(n)

eff (x) into the form

L̃(n)
eff (x) = − 1

n

1
4π

(3.12)

×
∫
d2k
πi
tr
{
1

k̂
Φ̃(x)

1

k̂
Φ̃(x) . . . Φ̃(x)

1

k̂
Φ̃(x)

}
.

A non-zero contribution comes only from even n, n =
2m(m = 1, 2, . . .)

L̃(2m)
eff (x) = − 1

m

1
4π
(Φ†(x)Φ(x))m

∫
d2k
πi

1
(k2)m

(3.13)

=
(−1)m+1

m

1
4π
(Φ†(x)Φ(x))m

∫ Λ
µ

dk2E
(k2E)m

,

where Λ and µ are the ultra-violet and infra-red cut-offs.
For m = 1 we get

L̃(2)
eff (x) = Φ†(x)Φ(x)

1
4π
ln
Λ2

µ2 . (3.14)

In turn for m �= 1 we obtain

L̃(2m)
eff (x) =

(−1)m
m(m− 1)(Φ

†(x)Φ(x))m

× 1
4π

[(
1
Λ2

)m−1

−
(
1
µ2

)m−1
]
. (3.15)

The total effective Lagrangian is given by

L̃eff(x) = −itr〈x| ln(iγµ∂µ)|x〉+ Φ†(x)Φ(x)
1
4π
ln
Λ2

µ2

+
1
4π

∞∑
n=1

(−1)n+1

n(n+ 1)
(Φ†(x)Φ(x))n+1

×
[(

1
Λ2

)n
−
(
1
µ2

)n]
. (3.16)

Summing up the infinite series we arrive at the expression

L̃eff(x) =
1
4π

[
(Λ2 lnΛ2 − Λ2 − µ2 lnµ2 + µ2)

+Φ†(x)Φ(x) ln
Λ2

µ2 + (Λ
2 + Φ†(x)Φ(x))

× ln
(
1 +

Φ†(x)Φ(x)
Λ2

)
− (µ2 + Φ†(x)Φ(x))

× ln
(
1 +

Φ†(x)Φ(x)
µ2

)]
, (3.17)

where we have taken into account that (see (3.8))

−itr〈x| ln(iγµ∂µ)|x〉 = 1
4π

∫ Λ
µ

dk2E ln k
2
E (3.18)

=
1
4π
(Λ2 lnΛ2 − Λ2 − µ2 lnµ2 + µ2).

Equation (3.17) can be simplified:

L̃eff(x) =
1
4π

[
(µ2 − Λ2) + (Λ2 + Φ†(x)Φ(x))

× ln(Λ2 + Φ†(x)Φ(x))− (µ2 + Φ†(x)Φ(x))

× ln (µ2 + Φ†(x)Φ(x)
)]
. (3.19)

Setting µ = 0 we arrive at the effective potential (3.9).
The total effective potential we obtain by summing up

(3.9) and the quadratic term of (3.3) which has the form
(1/2g)Φ†(x)Φ(x):

V [Φ†(x)Φ(x)] = Ṽ [Φ†(x)Φ(x)] +
1
2g
Φ†(x)Φ(x)

=
1
4π

[
Φ†(x)Φ(x) lnΦ†(x)Φ(x)

−(Λ2 + Φ†(x)Φ(x)) ln(Λ2 + Φ†(x)Φ(x))

+
2π
g
Φ†(x)Φ(x) + Λ2

]
. (3.20)
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Fig. 1. The effective potential V (ρ) of (3.21) as a function of
ρ/Λ for 2π/g = ln 2k with k = 1, 2 and 3

In the polar representation Φ(x) = ρ(x)eiϑ(x) correspond-
ing to σ(x) = ρ(x) cosϑ(x) and ϕ(x) = ρ(x) sinϑ(x), the
effective potential depends only on the ρ field and reads

V [ρ(x)] =
1
4π

[
ρ2(x) ln

ρ2(x)
Λ2 (3.21)

− (Λ2 + ρ2(x)) ln
(
1 +

ρ2(x)
Λ2

)
+
2π
g
ρ2(x)

]
,

where we have dropped the unimportant divergent contri-
bution (Λ2 −Λ2 lnΛ2)/4π. This shifts the effective poten-
tial to V [0] = 0.
It is well known that a quantum system has to be quan-

tized around the minima of the effective potential. They
are defined by4

δV [ρ̄(x)]
δρ̄(x)

=
1
2π
ρ̄(x)

[
− ln

(
1 +

Λ2

ρ̄2(x)

)
+
2π
g

]
= 0, (3.22)

where ρ̄(x) is the vacuum expectation value of the ρ
field, ρ̄(x) = 〈ρ(x)〉. Equation (3.22) has a trivial solu-
tion ρ̄(x) = 0 which corresponds to a maximum of the
potential and a non-trivial one

ρ̄(x) =
Λ√

e2π/g − 1
. (3.23)

The only constraint on the existence of the non-trivial
solution is g > 0. This condition is trivial, since according
to the analysis by Nambu and Jona–Lasinio [18] bound
collective ψ̄ψ excitations can appear in a theory with the
Lagrangian (1.18) only in the case of attraction between
fermions, i.e. for positive g.
The effective potential V (ρ) of (3.21) as a function of

ρ/Λ is depicted in Fig. 1 for 2π/g = ln 2k with k = 1, 2
and 3. One can clearly see the maximum at ρ̄ = 0 and
the minimum at ρ̄2/Λ2 = 1/(2k − 1) corresponding to a
non-trivial solution of the gap equation (3.22).

4 The vacuum average 〈0|V [ρ(x)]|0〉 of the effective potential
we carry out in the tree approximation for the ρ field [19–22].
This yields 〈0|V [ρ(x)]|0〉tree = V [〈ρ(x)〉]

From the second derivative one can see that the ef-
fective potential (3.21) has a minimum only for the non-
trivial solution of ρ̄(x) defined by (3.23). We denote this
non-trivial solution ρ̄(x) = ρ0.
One can show that ρ0 coincides with the dynamical

mass M given by (1.15). To show this we derive the equa-
tions of motion

ψ̄(x)ψ(x) = −σ(x)
g

,

ψ̄(x)iγ5ψ(x) = −ϕ(x)
g

, (3.24)

from the linearized Lagrangian defining the partition func-
tion ZTh in (3.3).
The vacuum average 〈0|ψ̄(x)ψ(x)|0〉 of the first equa-

tion of motion in the one-fermion loop approximation for
the ψ field and in the tree approximation of the σ field
gives

〈0|ψ̄(x)ψ(x)|0〉one loop = −〈0|σ(x)|0〉tree
g

= −ρ0
g
, (3.25)

where

〈0|σ(x)|0〉tree = 〈ρ(x)〉〈0| cosϑ(x)|0〉tree
= ρ0 cos〈0|ϑ(x)|0〉 = ρ0.

Matching the r.h.s. of (3.25) with (1.16) for the fermion
condensate one obtains ρ0 = M . This demonstrates the
complete agreement between the fermionic and bosonic
description of the massless Thirring model. This result
runs parallel to the dynamics of the evolution of the
fermion system in NJL models describing well both low-
energy interactions of hadrons [19–21] and confinement
[22]. Below we would use M instead of ρ0.
Expanding the effective potential around the minimum

ρ(x) = ρ0 + ρ̃(x) we get

V [ρ̃(x)] = V [ρ0] +
1
2π
(1− e−2π/g)ρ̃2(x)

+
1
6π
e−2π/g(1− e−2π/g)3/2(1− 2e−2π/g)

ρ̃3(x)
Λ

+ O

(
1
Λ2

)
. (3.26)

Keeping only terms surviving in the Λ → ∞ limit we
arrive at the expression

V [ρ̃(x)] =
1
2π
(1− e−2π/g)ρ̃2(x), (3.27)

where we have dropped the trivial infinite constant V [M ].
It is clear from dimensional considerations that the

gradient terms of the ρ̃ field ∂µρ̃(x) appear in the effec-
tive Lagrangian only in the ratio ∂µρ̃(x)/Λ. Thereby, they
vanish in the limit Λ → ∞.
Hence, the effective potential defined by (3.27) implies

that the fluctuations of the ρ field around the minimum
(3.21) of the effective potential are described by a free
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Fig. 2. The effective potential V (ρ) of (3.21) as a function of
ρ and ϑ for 2π/g = 2 ln 2

scalar field ρ̃(x) decoupled from the phase field ϑ(x)5.
The ρ and ϑ dependence of the effective potential V (ρ)
of (3.21) is shown in Fig. 2 for 2π/g = ln 22. For further
investigation of the dynamics of the ϑ field one can inte-
grate out the degrees of freedom related to the ρ̃ field and
employ the representation

Φ(x) = σ(x) + iϕ(x) =Meiϑ(x). (3.28)

Hence, a bosonized version of the massless Thirring model
obtained from the chirally broken phase of the fermion
system is defined by only one degree of freedom, a scalar
field ϑ(x).
In the approximation presented by (3.28) the partition

function (3.4) reduces to the form

ZTh =
∫

DϑDet(iγµ∂µ −Meiγ
5ϑ), (3.29)

where we have dropped a trivial infinite constant. The
functional determinant can be transformed as follows:

Det(iγµ∂µ −Meiγ
5ϑ)

= Det(eiγ
5ϑ/2(iγµ∂µ + γµAµ −M)eiγ

5ϑ/2)
= J [ϑ]Det(iγµ∂µ + γµAµ −M), (3.30)

where we have denoted

Aµ(x) =
1
2
εµν∂

νϑ(x). (3.31)

The Jacobian J [ϑ] induced by a local chiral rotation can
be calculated in the usual way [12–17]. In the appendix we
show that by using an appropriate regularization scheme
this Jacobian can be found to be equal to unity,

J [ϑ] = 1. (3.32)

The partition function (3.29) then reads

ZTh =
∫

DϑDet(iγµ∂µ + γµAµ −M)

=
∫

Dϑ exp i
∫
d2xLeff(x). (3.33)

The simplest way to calculate the effective Lagrangian
Leff(x) is to represent it in the form of one-fermion loop

5 The decoupling of the ρ̃ field is demonstrated in more detail
in AppendixB

diagrams [19–22]. Since M is proportional to Λ, it is clear
from dimensional considerations that the main contribu-
tion should come from the diagram with two vertices. The
contribution of the diagram with n > 2 vertices falls as
O(1/Λn−2) at Λ → ∞. That is why the effective La-
grangian Leff(x) is determined by

Leff(x) = −i〈x|tr ln(iγµ∂µ −M)|x〉

− 1
8π

∫
d2x1d2k1
(2π)2

e−ik1·(x1−x)Aµ(x)Aν(x1)

×
∫
d2k
πi
tr
{

1

M − k̂
γµ

1

M − k̂ − k̂1
γν
}
. (3.34)

Omitting a trivial infinite constant and keeping only the
leading contribution at Λ → ∞ we get

Leff(x) =
1
16π

(1− e−2π/g)∂µϑ(x)∂µϑ(x), (3.35)

where we have used the relation εµαενα = −gνµ.
This result testifies that the bosonized version of the

massless Thirring model obtained from the chirally broken
phase of the fermion system is a quantum field theory of
a free massless scalar field ϑ(x).

4 Generating functional of Green functions
in the massless Thirring model.
Bosonization rules

Now we are able to turn to the problem of an explicit eval-
uation of arbitrary correlation functions in the massless
Thirring model. To this aim we consider the generating
functional of Green functions defined by

ZTh[J, J̄ ] =
∫

DψDψ̄ exp i
∫
d2x

{
ψ̄(x)iγµ∂µψ(x)

−1
2
gψ̄(x)γµψ(x)ψ̄(x)γµψ(x)

+ψ̄(x)J(x) + J̄(x)ψ(x)

}

=
∫

DψDψ̄ exp i
∫
d2x

{
ψ̄(x)iγµ∂µψ(x)

+
1
2
g[(ψ̄(x)ψ(x))2 + (ψ̄(x)iγ5ψ(x))2]

+ψ̄(x)J(x) + J̄(x)ψ(x)

}

=
∫

DψDψ̄DσDϕ exp i
∫
d2x

{
ψ̄(x)iγµ∂µψ(x)

−ψ̄(x)(σ(x) + iγ5ϕ(x))ψ(x) + ψ̄(x)J(x)

+J̄(x)ψ(x)− 1
2g
[σ2(x) + ϕ2(x)]

}
, (4.1)
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where J̄(x) and J(x) are external sources of the Thirring
fields ψ(x) and ψ̄(x). Therewith, the external source J(x),
a column matrix with components J1(x) and J2(x), is re-
sponsible for the production of the ψ†

2(x) and ψ
†
1(x) fields,

whereas the external source J̄(x), a row matrix with com-
ponents J†

2(x) and J
†
1(x), produces the fields ψ1(x) and

ψ2(x).
Integrating over the fermion fields we arrive at

ZTh[J, J̄ ] =
∫

DσDϕDet(iγµ∂µ − σ − iγ5ϕ)

× exp i
∫
d2x

{
− 1
2g
[σ2(x) + ϕ2(x)]

}
(4.2)

× exp i
∫
d2x

{
−J̄(x) 1

iγµ∂µ − σ(x)− iγ5ϕ(x)
J(x)

}
.

Skipping intermediate steps expounded in detail in Sect. 3
we get

ZTh[J, J̄ ] =
∫

Dϑ exp i
∫
d2x

{
1
16π

(1− e−2π/g)∂µϑ(x)

×∂µϑ(x)− J̄(x)
1

iγµ∂µ −Meiγ
5ϑ(x)

J(x)

}
.

(4.3)

Keeping only leading terms in the 1/M expansion (or
equivalently in 1/Λ) we obtain

ZTh[J, J̄ ] =
∫

Dϑ exp i
∫
d2x

{
1
16π

(1− e−2π/g)∂µϑ(x)

×∂µϑ(x) + 1
M
J̄(x)

(
1− γ5

2

)
J(x)eiϑ(x)

+
1
M
J̄(x)

(
1 + γ5

2

)
J(x)e−iϑ(x)

}

=
∫

Dϑ exp i
∫
d2x

{
1
2
1
8π
(1− e−2π/g)∂µϑ(x)

×∂µϑ(x) + 1
M
J†
1(x)J2(x)eiϑ(x)

+
1
M
J†
2(x)J1(x)e−iϑ(x)

}
. (4.4)

By normalizing the ϑ field, ϑ(x) → βϑ(x), with β given
by the condition

8π
β2 = 1− e−2π/g, (4.5)

resembling Coleman’s relation [3], and defining correctly
the kinetic term of the renormalized field ϑ(x), we arrive
at

ZTh[J, J̄ ] =
∫

Dϑ exp i
∫
d2x

{
1
2
∂µϑ(x)∂µϑ(x) +

1
M

×J†
1(x)J2(x)eiβϑ(x) +

1
M
J†
2(x)J1(x)e−iβϑ(x)

}
. (4.6)

The vacuum expectation value of the fermion fields con-
sidered by Coleman [3],〈

0

∣∣∣∣∣T
(
n∏
k=1

σ+(xk)σ−(yk)

)∣∣∣∣∣ 0
〉

(4.7)

=

〈
0

∣∣∣∣∣T
(
n∏
k=1

[ψ†
2(xk)ψ1(xk)][ψ

†
1(yk)ψ2(yk)]

)∣∣∣∣∣ 0
〉
,

can be represented in the form of functional derivatives
with respect to external sources J†

1(x), J
†
2(x) and J1(x),

J2(x):〈
0

∣∣∣∣∣T
(
n∏
k=1

σ+(xk)σ−(yk)

)∣∣∣∣∣ 0
〉

=

〈
0

∣∣∣∣∣T
(
n∏
k=1

[ψ†
2(xk)ψ1(xk)][ψ

†
1(yk)ψ2(yk)]

)∣∣∣∣∣ 0
〉

=
n∏
k=1

δ

iδJ1(xk)
δ

iδJ†
2(xk)

δ

iδJ2(yk)
δ

iδJ†
1(yk)

×ZTh[J, J̄ ]|J1=J2=J†
1=J†

2=0. (4.8)

Using the generating functional ZTh[J, J̄ ] in the form (4.6)
the r.h.s. of (4.8) can be written as〈
0

∣∣∣∣∣T
(
n∏
k=1

σ+(xk)σ−(yk)

)∣∣∣∣∣ 0
〉

(4.9)

=

〈
0

∣∣∣∣∣T
(
n∏
k=1

[ψ†
2(xk)ψ1(xk)][ψ

†
1(yk)ψ2(yk)]

)∣∣∣∣∣ 0
〉

= (−1)n
(
δ2(0)
M

)2n
〈
0

∣∣∣∣∣T
(
n∏
i=1

[A−(xi)A+(yi)]

)∣∣∣∣∣ 0
〉
,

where δ2(0) =
∫
d2p/(2π)2 = i

∫
d2pE/(2π)2 = iΛ̄2/4π.

The cut-off Λ̄ is invented to regularize divergences coming
from the closed loops of the ϑ field. The two-point Green
function of the ϑ field (2.9) regularized at x = y is defined
by

i∆(0) = − 1
4π
ln
(
Λ̄2

µ2

)
. (4.10)

Thereby, the relation (4.9) can be rewritten as follows:〈
0

∣∣∣∣∣T
(
n∏
k=1

σ+(xk)σ−(yk)

)∣∣∣∣∣ 0
〉

(4.11)

=

〈
0

∣∣∣∣∣T
(
n∏
k=1

[ψ†
2(xk)ψ1(xk)][ψ

†
1(yk)ψ2(yk)]

)∣∣∣∣∣ 0
〉

=
(

Λ̄2

4πM

)2n
〈
0

∣∣∣∣∣T
(
n∏
i=1

[A−(xi)A+(yi)]

)∣∣∣∣∣ 0
〉
,

Relation (4.11) demonstrates the equivalence between vac-
uum expectation values in the massless Thirring model
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and vacuum expectation values in a quantum field the-
ory of a massless scalar field ϑ(x) coupled to external
sources via exponential couplings A+(x) = eiβϑ(x) and
A−(x) = e−iβϑ(x) (see (2.3)).
In order to fix the value of Λ̄ in terms ofM we suggest

to evaluate the vacuum expectation value of the operator

(ψ̄(x)ψ(x))2 + (ψ̄(x)iγ5ψ(x))2 = 4σ+(x)σ−(x). (4.12)

In Sect. 6 (see (6.54)) we show that this operator is an
integral of motion and is equal to M2/g2. The evaluation
of the vacuum expectation value of the operator (4.12) can
be carried out with the help of (4.11). The result reads〈

0
∣∣[(ψ̄(x)ψ(x))2 + (ψ̄(x)iγ5ψ(x))2

]∣∣ 0〉
= 〈0 |[4σ+(x)σ−(x)]| 0〉

=
(

Λ̄2

2πM

)2

〈0 |[A−(x)A+(x)]| 0〉

=
(

Λ̄2

2πM

)2

. (4.13)

Equating the r.h.s. of (4.13) to M2/g2 we obtain the cut-
off Λ̄ in terms of M and g

Λ̄ =
√
2π
g
M. (4.14)

In the strong coupling limit g → ∞ we get Λ̄ → Λ, whereas
in the weak coupling limit g → 0 the cut-off Λ̄ vanishes.
The former corresponds to the absence of the ϑ field fluc-
tuations in a free massless fermion field theory.
Using the relation (4.14) we recast the r.h.s. of (4.11)

into the form〈
0

∣∣∣∣∣T
(
n∏
k=1

σ+(xk)σ−(yk)

)∣∣∣∣∣ 0
〉

=

〈
0

∣∣∣∣∣T
(
n∏
k=1

[ψ†
2(xk)ψ1(xk)][ψ

†
1(yk)ψ2(yk)]

)∣∣∣∣∣ 0
〉

=
〈ψ̄ψ〉2n
22n

〈
0

∣∣∣∣∣T
(
n∏
i=1

[A−(xi)A+(yi)]

)∣∣∣∣∣ 0
〉
, (4.15)

where we have used that 〈ψ̄ψ〉 = −M/g (1.16).
Using (2.10) the r.h.s. of (4.15) can be calculated ex-

plicitly and reads〈
0

∣∣∣∣∣T
(
n∏
k=1

σ+(xk)σ−(yk)

)∣∣∣∣∣ 0
〉

=
〈ψ̄ψ〉2n
22n

enβ
2i∆(0) (4.16)

×

n∏
j<k

[−µ2(xj − xk)2]β
2/4π[−µ2(yj − yk)2]β

2/4π

∏n
j=1

∏n
k=1[−µ2(xj − yk)2]β

2/4π ,

where i∆(0) is defined by (4.10). Formula (4.16) repro-
duces, in principle, Klaiber’s equations [5] used further by

Coleman [3] but with a relation between the coupling con-
stants β and g (4.5) different to that suggested by Coleman
(1.9) [3]. The new relation (4.5) is caused by the fact that
in our approach unlike in that of Coleman the fermion
system is in the chirally broken phase.
Relation (4.15) between the vacuum expectation val-

ues can be represented in operator form by the Abelian
bosonization rules

Zψ̄(x)
(
1∓ γ5

2

)
ψ(x) =

1
2
〈ψ̄ψ〉e±iβϑ(x). (4.17)

They can be derived straightforwardly from the equations
of motion (3.24) for σ(x) and ϕ(x) connected by (3.28),
where M/g = −〈ψ̄ψ〉,

ψ̄(x)
(
1∓ γ5

2

)
ψ(x) =

1
2
〈ψ̄ψ〉e±iβϑ(x), (4.18)

with a subsequent renormalization of the fermion field
ψ(x)→ Z1/2ψ(x), where Z is a renormalization constant.
The parameter Z is invented to remove divergences ap-
pearing in the evaluation of the vacuum expectation val-
ues of A−(x) and A+(y). If such divergences do not appear
the parameter Z should be set unity, Z = 1. For example,
in one-loop approximation for the fermion field and tree
approximation for the ϑ field one obtains Z = 1.
Relation (4.17) is analogous to the Abelian bosoniza-

tion rules derived by Coleman (1.10) in the massive
Thirring model. For the massless Thirring model due to
the employment of the chiral symmetric phase with a chi-
ral symmetric vacuum giving 〈ψ̄ψ〉 = 0 Coleman’s proce-
dure fails in deriving a relation like (4.17).
In Sect. 6 we show that the Abelian bosonization rules

(4.17) are consistent with the equations of motion for
fermionic fields evolving out of the chirally broken phase.
Using the Abelian bosonization rules (4.17) we are able

to evaluate the vacuum expectation value of the ψ̄(x)ψ(x)
operator:

〈0|ψ̄(x)ψ(x)|0〉 = 〈0|[σ+(x) + σ−(x)]|0〉
=
1
2
Z−1〈ψ̄ψ〉〈0|[A−(x) +A+(x)]|0〉

= Z−1〈ψ̄ψ〉〈0| cosβϑ(x)|0〉 = 0, (4.19)
where we have used (2.10) and (2.11).
We would like to emphasize that the vanishing of the

vacuum expectation value (4.19) is caused by the infrared
behavior of the ϑ field. This is related to the µ → 0 limit
which takes into account long-range fluctuations. In this
region the ϑ field is ill-defined [26,27] which leads to the
randomization of the ϑ field in the infrared region [28].
Due to this cosβϑ(x) is averaged to zero [28]. This result
agrees with the Mermin–Wagner theorem [25] pointing out
the absence of long-range order in two-dimensional mod-
els. However, since the randomization of the ϑ field in the
infrared region is fully a 1 + 1-dimensional problem, one
can avoid the vanishing of 〈0|ψ̄(x)ψ(x)|0〉 by means of di-
mensional regularization. In more detail we discuss this
problem in Sect. 8. There we give also an exact solution
for the massless Thirring model in the sense of the evalu-
ation of any correlation function.
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5 Bosonization of the massive Thirring model

The massive Thirring model differs from the massless
model by the term −mψ̄(x)ψ(x) in the Lagrangian, where
m is the fermion mass.
Skipping intermediate steps which we have carried out

explicitly in Sect. 2 we arrive at the partition function of
the massive Thirring model given in terms of the path
integral over fermion fields and over fields of collective
excitations

ZTh =
∫

DψDψ̄DσDϕ

× exp i
∫
d2x

{
ψ̄(x)iγµ∂µψ(x)−mψ̄(x)ψ(x)

− ψ̄(x)(σ(x) + iγ5ϕ(x))ψ(x)

− 1
2g
[σ2(x) + ϕ2(x)]

}
. (5.1)

By a shift of the σ field, m+ σ → σ, we obtain

ZTh =
∫

DψDψ̄DσDϕ exp i
∫
d2x

{
ψ̄(x)iγµ∂µψ(x)

− ψ̄(x)(σ(x) + iγ5ϕ(x))ψ(x)

− 1
2g
[σ2(x) + ϕ2(x)] +

m

g
σ(x)

}
, (5.2)

where we have dropped an infinite constant proportional
to m2.
Integrating over fermionic degrees of freedom we recast

the integrand into the form

ZTh =
∫

DσDϕDet(iγµ∂µ − σ − iγ5ϕ) (5.3)

× exp i
∫
d2x

{
− 1
2g
[σ2(x) + ϕ2(x)] +

m

g
σ(x)

}
.

Since the functional determinant coincides completely
with the determinant calculated in Sect. 3, we can imme-
diately write down the total effective potential

V [Φ†(x), Φ(x)]

= Ṽ [Φ†(x)Φ(x)] +
1
2g
Φ†(x)Φ(x)− m

g
σ(x)

=
1
4π

[
Φ†(x)Φ(x) lnΦ†(x)Φ(x)

−(Λ2 + Φ†(x)Φ(x)) ln(Λ2 + Φ†(x)Φ(x))

+
2π
g
Φ†(x)Φ(x)− 4πm

g
σ(x) + Λ2

]
. (5.4)

In polar representation the effective potential (5.4) up to
an infinite constant takes the form

V [ρ(x), ϑ(x)] =
1
4π

[
ρ2(x) ln

ρ2(x)
Λ2 − (Λ2 + ρ2(x))

Fig. 3. The effective potential V (ρ) of (5.5) as a function of
ρ and ϑ for 2π/g = ln 22 and 4πm/g = 0.2 in units of Λ

× ln
(
1 +

ρ2(x)
Λ2

)
+
2π
g
ρ2(x)− 4πm

g
ρ(x)

−4πm
g

ρ(x)(cosϑ(x)− 1)
]
. (5.5)

A graphical representation of this potential as a function
of ρ and ϑ is shown in Fig. 3 for 2π/g = ln 22 and 4πm/g =
0.2 in units of Λ.
For the calculation of the minimum of the effective po-

tential (5.5) we have to calculate the vacuum expectation
value

V [ρ̄(x), 0] =
1
4π

[
ρ̄2(x) ln

ρ̄2(x)
Λ2 − (Λ2 + ρ̄2(x)) (5.6)

× ln
(
1 +

ρ̄2(x)
Λ2

)
+
2π
g
ρ̄2(x)− 4πm

g
ρ̄(x)

]
,

where we have used 〈0|ϑ(x)|0〉 = 0 and 〈0| cosϑ(x)−1|0〉 =
cos〈0|ϑ(x)|0〉−1 = 0 which corresponds to the tree approx-
imation for the ϑ field. The first derivative of the effective
potential (5.6) with respect to ρ̄(x) is given by

δV [ρ̄(x), 0]
δρ̄(x)

=
1
π
ρ̄(x)

[
− ln

(
1 +

Λ2

ρ̄2(x)

)
+
2π
g

− 2πm
g

1
ρ̄(x)

]
= 0. (5.7)

The r.h.s of (5.7) can be rewritten in a more convenient
form:

ρ̄(x) = m+ ρ̄(x)
g

2π
ln
(
1 +

Λ2

ρ̄2(x)

)
. (5.8)

This result agrees well with the gap equation (1.14) mod-
ified for m �= 0,

M = m+M
g

2π
ln
(
1 +

Λ2

M2

)
, (5.9)

with ρ̄(x) =M . By using (1.16) relation (5.9) reads

M −m = −g〈ψ̄ψ〉. (5.10)

The solution of (5.8) is equal to

ρ̄(x) = M (5.11)

=
Λ√

e2π/g − 1
+
π

g

m

1− e−2π/g +O
(
m2

Λ

)
.
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Since Λ � m, our statement concerning the decoupling of
the ρ̃ field is also valid for the bosonization of the massive
Thirring model. This implies that the bosonized version of
the massive Thirring model as well as the massless one is
described by one degree of freedom, the scalar field ϑ(x).
The partition function of the bosonized version of the

massive Thirring model defined in the vicinity of the min-
imum of the effective potential (5.5) acquires the form

ZTh =
∫

DϑDet(iγµ∂µ −Meiγ
5ϑ)

× exp i
∫
d2x

mM

g
(cosϑ(x)− 1)

=
∫

DϑDet(iγµ∂µ + γµAµ −M)

× exp i
∫
d2x

mM

g
(cosϑ(x)− 1)

=
∫

Dϑ exp i
∫
d2xLeff(x), (5.12)

where Aµ(x) = (1/2)εµν∂νϑ(x) and the effective La-
grangian Leff(x) is determined by

Leff(x) = −i〈x|tr ln(iγµ∂µ −M)|x〉

− 1
8π

∫
d2x1d2k1
(2π)2

e−ik1·(x1−x)Aµ(x)Aν(x1)

×
∫
d2k
πi
tr
{

1

M − k̂
γµ

1

M − k̂ − k̂1
γν
}

+
mM

g
(cosϑ(x)− 1) (5.13)

in complete analogy with the massless case (3.34).
Omitting a trivial infinite constant and the terms pro-

portional to inverse powers of Λ leads to

Leff(x) =
1
16π

(1− e−2π/g)∂µϑ(x)∂µϑ(x)

+
mM

g
(cosϑ(x)− 1). (5.14)

In order to get the correct kinetic term of the ϑ field, we
renormalize the ϑ field, ϑ(x) → βϑ(x), where the renor-
malization constant β obeys relation (4.5). Introducing a
parameter α

α =
mM

g
= −mβ2〈ψ̄ψ〉+ m2

g
β2, (5.15)

where we have used (5.10), we transform the effective La-
grangian (5.14) to the standard form of the Lagrangian of
the SG model [3]

Leff(x) =
1
2
∂µϑ(x)∂µϑ(x) +

α

β2 (cosβϑ(x)− 1). (5.16)

This testifies the complete equivalence of the bosonized
version of the massive Thirring model and the SG model

ZTh = ZSG, (5.17)

with the relation (4.5) between the coupling constants β
and g.
The generating functional of the Green functions

ZTh[J, J̄ ] in the massive Thirring model can be derived in
analogy to (4.6), the generating functional of the Green
functions in the massless Thirring model, and reads

ZTh[J, J̄ ] =
∫

Dϑ exp i
∫
d2x

{
1
2
∂µϑ(x)∂µϑ(x)

+
α

β2 (cosβϑ(x)− 1) +
1
M
J†
1(x)J2(x)eiβϑ(x)

+
1
M
J†
2(x)J1(x)e−iβϑ(x)

}
. (5.18)

The Abelian bosonization rules analogous to (4.17) in the
massless Thirring model can be derived from the equations
of motion

ψ̄(x)ψ(x) = −σ(x)−m

g
,

ψ̄(x)iγ5ψ(x) = −ϕ(x)
g

. (5.19)

Setting σ(x) = M cosβϑ(x) and ϕ(x) = M sinβϑ(x) we
get

mψ̄(x)
(
1∓ γ5

2

)
ψ(x) = − α

2β2 e
±iβϑ(x) +

m2

2g
. (5.20)

Renormalizing the fermion field ψ(x) → Z1/2ψ(x) we ar-
rive at the relation

Zmψ̄(x)
(
1∓ γ5

2

)
ψ(x) = − α

2β2 e
±iβϑ(x) +

m2

2g
. (5.21)

For the evaluation of the vacuum expectation value in one-
loop approximation for the fermion field and in tree ap-
proximation for the scalar field, the parameter Z amounts
to Z = 1.
The operator relation (5.21) can be considered as a

generalization of the Abelian bosonization rules (1.10) de-
rived by Coleman. The term proportional to m2 can be
dropped at leading order in the m expansion [3].
We would like to accentuate that in our case the cou-

pling constant β2 is always greater than 8π, β2 > 8π. This
is in disagreement with Coleman’s statement pointing out
that the equivalence between the massive Thirring model
and the SG model can exist only if β2 < 8π [3]. Such a dis-
agreement can be explained by different starting phases of
the fermion system evolving to the bosonic phase. In fact,
in Coleman’s approach the fermion system has been con-
sidered in the chiral symmetric phase, whereas in our case
the fermion system is in the phase of spontaneously bro-
ken chiral symmetry. We would like to recall that in the
Thirring model with an attractive four-fermion interaction
the chirally broken phase is preferable.
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6 Operator formalism
for the massless Thirring model

In this section we investigate the massless Thirring model
in the operator formalism. We analyze the normal order-
ing of fermion operators and chiral symmetry breaking,
the equations of motion for fermion fields, the current al-
gebra and the connection of the energy-momentum tensor
θµν(x, t) [30] with its Sugawara form [31,32]. We show
that the Schwinger term [33] calculated for the fermion
system in the chirally broken phase depends on the cou-
pling constant g and reduces to the result obtained by
Sommerfield [34] in the limit g → 0. We demonstrate that
Sommerfield’s value for the Schwinger term corresponds
to a trivial vacuum of the fermion system.
We discuss the phenomenon of spontaneous breaking

of chiral symmetry in the massless Thirring case from
the point of view of the BCS theory of superconductivity.
We use the BCS expression for the wave function of the
non-perturbative vacuum and calculate the energy den-
sity of this non-perturbative vacuum state. We show that
the energy density of the non-perturbative vacuum ac-
quires a minimum just, when the dynamical mass M of
the fermions satisfies the gap equation (1.14).

6.1 Normal ordering and chiral symmetry breaking

The Lagrangian of the massless Thirring that we use below
reads

L(x, t) = : ψ̄(x, t)iγµ∂µψ(x, t) :
−1
2
g : ψ̄(x, t)γµψ(x, t)ψ̄(x, t)γµψ(x, t) :, (6.1)

where : . . . : denotes normal ordering. A vector current
jµ(x, t) and the divergence ∂µjµ(x, t) can be derived in
the usual way by a local gauge transformation UV(1) with
a parameter αV(x, t):

ψ(x, t) → eiαV(x,t)ψ(x, t),

ψ̄(x, t) → ψ̄(x, t)e−iαV(x,t). (6.2)

This changes the Lagrangian (6.1) as follows:

L(x, t)→ L[αV(x, t)] = L(x, t) (6.3)
− : ψ̄(x, t)γµψ(x, t) : ∂µαV(x, t).

Therefore, the vector current jµ(x, t) and its divergence
∂µjµ(x, t) are equal to

jµ(x, t) = −δL[αV(x, t)]
δ∂µαV(x, t)

=: ψ̄(x, t)γµψ(x, t) :,

∂µjµ(x, t) = −δL[αV(x, t)]
δαV(x, t)

= 0. (6.4)

For the subsequent analysis we need the interaction term
in the Lagrangian (6.1) in the form of a product of currents
jµ(x, t)jµ(x, t). In order to understand the replacement

: ψ̄(x, t)γµψ(x, t)ψ̄(x, t)γµψ(x, t) :→ jµ(x, t)jµ(x, t)

we suggest to start with the product jµ(x, t)jµ(x, t) and
Wick’s theorem to reduce this product to the form of the
interaction term in (6.1). It is useful to employ Schwinger’s
method of separation [33]. Denoting (x, t)→ x we obtain

jµ(x)jµ(x) = : ψ̄(x)γµψ(x) :: ψ̄(x)γµψ(x) : (6.5)

= lim
ε→0

: ψ̄
(
x+

1
2
ε

)
γµψ

(
x+

1
2
ε

)
:

× : ψ̄
(
x− 1

2
ε

)
γµψ

(
x− 1

2
ε

)
:

= lim
ε→0

[
: ψ̄

(
x+

1
2
ε

)
γµψ

(
x+

1
2
ε

)

×ψ̄
(
x− 1

2
ε

)
γµψ

(
x− 1

2
ε

)
:

+ : ψ̄
(
x+

1
2
ε

)
γµ

〈
0
∣∣∣∣ψ
(
x+

1
2
ε

)

× ψ̄

(
x− 1

2
ε

)∣∣∣∣ 0
〉
γµψ

(
x− 1

2
ε

)
:

+ : ψ̄
(
x− 1

2
ε

)
γµ

〈
0
∣∣∣∣ψ
(
x− 1

2
ε

)

× ψ̄

(
x+

1
2
ε

)∣∣∣∣ 0
〉
γµψ

(
x+

1
2
ε

)
:

−tr
{
γµ

〈
0
∣∣∣∣ψ
(
x− 1

2
ε

)
ψ̄

(
x+

1
2
ε

)∣∣∣∣ 0
〉

× γµ
〈
0
∣∣∣∣ψ
(
x+

1
2
ε

)
ψ̄

(
x− 1

2
ε

)∣∣∣∣ 0
〉}]

,

where ε = (ε0, ε1) is an infinitesimal 2-vector.
Now we would like to discuss the contributions caused

by the vacuum expectation values in (6.5). For the free
massless fermion field we get〈

0
∣∣∣∣ψ
(
x± 1

2
ε

)
ψ̄

(
x∓ 1

2
ε

)∣∣∣∣ 0
〉

=

∞∫
−∞

dp
4π

γ0|p| − γ1p

|p| e∓i(|p|ε0−pε1)

= ε̂

[
δ(ε2)∓ i

2π
1
ε2

]
. (6.6)

Due to the identity γµγαγµ = 0 for α = 0, 1 these vacuum
expectation values taken between γ matrices γµ . . . γµ van-
ish:

γµ

〈
0
∣∣∣∣ψ
(
x± 1

2
ε

)
ψ̄

(
x∓ 1

2
ε,

)∣∣∣∣ 0
〉
γµ = 0. (6.7)

This result persists for the interacting massless fermion
field. In fact, the vacuum expectation values calculated for
the trivial vacuum should have the following general form:〈

0
∣∣∣∣ψ
(
x± 1

2
ε

)
ψ̄

(
x∓ 1

2
ε

)∣∣∣∣ 0
〉
= γαΦα(x, ε), (6.8)

where Φα(x, ε) is an arbitrary function, and vanishes again
between the γ matrices γµ . . . γµ.
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Substituting (6.7) in (6.5) we obtain

jµ(x)jµ(x) = : ψ̄(x)γµψ(x) :: ψ̄(x)γµψ(x) :

= lim
ε→0

: ψ̄
(
x+

1
2
ε

)
γµψ

(
x+

1
2
ε

)
:

× : ψ̄
(
x− 1

2
ε

)
γµψ

(
x− 1

2
ε

)
:

= lim
ε→0

: ψ̄
(
x+

1
2
ε

)
γµψ

(
x+

1
2
ε

)

× ψ̄

(
x− 1

2
ε

)
γµψ

(
x− 1

2
ε

)
: . (6.9)

Therefore, in the trivial vacuum we get the relation

jµ(x, t)jµ(x, t)
=: ψ̄(x, t)γµψ(x, t) :: ψ̄(x, t)γµψ(x, t) :
=: ψ̄(x, t)γµψ(x, t)ψ̄(x, t)γµψ(x, t) :, (6.10)

where we have taken the limit ε → 0 and come back to
the notation x → (x, t).
Due to the relation (6.10), for a system of massless

fermions self-coupled in the chiral symmetric phase with
a trivial chirally invariant vacuum, the Lagrangian (6.1)
acquires the form

L(x, t) = : ψ̄(x, t)iγµ∂µψ(x, t) :
− 1
2
g : ψ̄(x, t)γµψ(x, t) :: ψ̄(x, t)γµψ(x, t) :

= : ψ̄(x, t)iγµ∂µψ(x, t) :

− 1
2
gjµ(x, t)jµ(x, t). (6.11)

Now let us show that the fermion system described by
the Lagrangian (6.11) is unstable under chiral symmetry
breaking. In order to reach this aim we rewrite the La-
grangian in an equivalent form:

L(x, t) = : ψ̄(x, t)(iγµ∂µ −M)ψ(x, t) :
+ M : ψ̄(x, t)ψ(x, t) : (6.12)

− 1
2
g : ψ̄(x, t)γµψ(x, t) :: ψ̄(x, t)γµψ(x, t) :

and normal order the interaction term at the scale M

: ψ̄(x, t)γµψ(x, t) :: ψ̄(x, t)γµψ(x, t) : (6.13)
=: ψ̄(x, t)γµψ(x, t)ψ̄(x, t)γµψ(x, t) :
+2 : ψ̄(x, t)γµ〈0|ψ(x, t)ψ̄(x, t)|0〉γµψ(x, t) :
−tr

{
γµ〈0|ψ(x, t)ψ̄(x, t)|0〉γµ〈0|ψ(x, t)ψ̄(x, t)|0〉

}
.

The vacuum expectation value in the r.h.s. of (6.13) calcu-
lated in the one-fermion loop approximation for massive
fermions of mass M reads
〈
0
∣∣ψ(x, t)ψ̄(x, t)∣∣ 0〉 →

〈
0
∣∣∣∣ψ
(
x± 1

2
ε

)
ψ̄

(
x∓ 1

2
ε

)∣∣∣∣ 0
〉

=

∞∫
−∞

dp
4π

γ0Ep − γ1p+M
Ep

e∓i(Epε
0−pε1)

= ± ε̂√
ε2
M

4π

∞∫
−∞

dϕ coshϕe−iM
√
ε2 coshϕ

+
M

4π

∞∫
−∞

dϕe−iM
√
ε2 coshϕ

= ± ε̂√
ε2
M

2π
K1

(
iM

√
ε2
)
+
M

2π
K0

(
iM

√
ε2
)
, (6.14)

where Ep = (p2 +M2)1/2 and K1(z) and K0(z) are Mc-
Donald’s functions. In the r.h.s. of (6.13) the contribution
of the first term proportional to ε̂ vanishes due to the iden-
tities γµε̂γµ = 0 and tr{ε̂} = 0. A non-zero contribution
comes only from the second term that coincides with the
causal Green function of the scalar field with a mass M
and can be regularized in the limit ε → 0 by the cut-off
Λ:

M

2π
K0(iM

√
ε2) = M

∫
d2p
(2π)2i

e∓ip·ε

M2 − p2 − i0
ε→0−→

∫
d2p
(2π)2i

M

M2 − p2 − i0
=
M

4π
ln
(
1 +

Λ2

M2

)
. (6.15)

Substituting (6.13) with the vacuum expectation value
(6.14) in (6.12) we obtain

L(x, t) = : ψ̄(x, t)(iγµ∂µ −M)ψ(x, t) : (6.16)

− 1
2
g : ψ̄(x, t)γµψ(x, t)ψ̄(x, t)γµψ(x, t) :

+
[
M − g

M

2π
ln
(
1 +

Λ2

M2

)]
: ψ̄(x, t)ψ(x, t) :,

where we have omitted an insignificant constant. Self-
consistency of the approach demands the relation

M − g
M

2π
ln
(
1 +

Λ2

M2

)
= 0,

that is, our gap equation (1.14). This results in the La-
grangian

L(x, t) = : ψ̄(x, t)(iγµ∂µ −M)ψ(x, t) : (6.17)

− 1
2
g : ψ̄(x, t)γµψ(x, t)ψ̄(x, t)γµψ(x, t) : .

For M �= 0 the Lagrangian (6.16) describes a system of
fermions with mass M in the chirally broken phase. We
conclude that for an attractive two-body interaction the
vacuum expectation values in (6.5) lead to an instability of
the perturbative vacuum. In the next subsection we show
that a stable non-perturbative vacuum can be determined
within the BCS formalism.

6.2 The massless Thirring model in the formalism
of the BCS theory of superconductivity.
Chiral symmetry breaking

We discuss the phenomenon of spontaneous breaking of
chiral symmetry in the massless Thirring model from the
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point of view of the Bardeen–Cooper–Schrieffer (BCS)
theory of superconductivity [23]. We show that the energy
density of the non-perturbative vacuum acquires a mini-
mum, when the dynamical mass M of fermions satisfies
the gap equation (1.14).
The Hamiltonian of the massless Thirring model is

equal to

H(x, t) = − : ψ̄(x, t)iγ1 ∂

∂x
ψ(x, t) : (6.18)

+
1
2
g : ψ̄(x, t)γµψ(x, t)ψ̄(x, t)γµψ(x, t) : .

In terms of the components of the ψ field, a column matrix
ψ(x, t) = (ψ1(x, t), ψ2(x, t)), the Hamiltonian (6.18) reads

H(x, t) = − : ψ†
1(x, t)i

∂

∂x
ψ1(x, t) :

+ : ψ†
2(x, t)i

∂

∂x
ψ2(x, t) :

+ 2g : ψ†
1(x, t)ψ1(x, t)ψ

†
2(x, t)ψ2(x, t) : . (6.19)

For the further evaluation it is convenient to embed the
fermion system into a finite volume L. For periodical con-
ditions ψ(0, t) = ψ(L, t) the expansion of ψ(x, t) into plane
waves reads (see AppendixD):

ψ(x, t) =
∑
p1

1√
2p0L

[
u(p0, p1)a(p1)e−ip0t+ip1x

+ v(p0, p1)b†(p1)eip
0t−ip1x

]
. (6.20)

The creation and annihilation operators are dimensionless
and obey the anti-commutation relations

{a(p1), a†(q1)} = {b(p1), b†(q1)} = δp1q1 ,

{a(p1), a(q1)} = {a†(p1), a†(q1)} = {b(p1), b(q1)}
= {b†(p1), b†(q1)} = 0. (6.21)

They are related to the annihilation operators of fermions
A(p1) and anti-fermions B(p1) with mass M by the Bo-
goliubov transformation [18,24]

A(p1) = up1a(p1)− vp1b
†(−p1),

B(p1) = up1b(p1)− vp1a
†(−p1). (6.22)

The coefficient functions up1 and vp1 are equal to [18,22,
24]:

up1 =

√√√√1
2

(
1 +

|p1|√
(p1)2 +M2

)
,

vp1 = ε(p1)

√√√√1
2

(
1− |p1|√

(p1)2 +M2

)
, (6.23)

where ε(p1) is a sign function, and obey the normalization
condition

u2
p1 + v

2
p1 = 1. (6.24)

The wave function of the non-perturbative vacuum |Ω〉 we
take in the BCS form [23]:

|Ω〉 =
∏
k1

[uk1 + vk1a†(k1)b†(−k1)]|0〉, (6.25)

where |0〉 is a perturbative, chiral symmetric vacuum. The
wave function |Ω〉 satisfies the equations

A(p1)|Ω〉 = B(p1)|Ω〉 = 0 (6.26)

and is invariant under parity transformation:

Pψ(x, t)P† = γ0ψ(−x, t)
=⇒ Pψ1(x, t)P† = ψ2(−x, t),

Pψ2(x, t)P† = ψ1(−x, t),
Pa†(k1)P† = +a†(−k1),
Pb†(k1)P† = −b†(−k1), (6.27)

where we have dropped insignificant phase factors.
Due to the relation (6.24) the wave function of the non-

perturbative vacuum is normalized to unity 〈Ω|Ω〉 = 1.
The coefficient functions uk1 and vk1 depend explicitly on
the dynamical M which we treat as a variational param-
eter.
The energy of the ground state is equal to [23]

E(M) =
∫ ∞

−∞
dx〈Ω|H(x, t)|Ω〉 (6.28)

= 4
∑
p1>0

p1v2p1 − 8g
L




∑
p1>0

vp1up1




2

+
1
2

∑
p1>0

v4p1


 .

The energy density we define by

E(M) = lim
L→∞

E(M)
L

= 4
∫ ∞

0

dp1

2π
p1v2(p1)

− 8g
[∫ ∞

0

dp1

2π
v(p1)u(p1)

]2
. (6.29)

Substituting (6.23) in (6.29) we express the energy density
as a function of the variational parameter M :

E(M) = 2
∫ ∞

0

dp1

2π
p1

(
1− p1√

(p1)2 +M2

)

− 2g

[∫ ∞

0

dp1

2π
M√

(p1)2 +M2

]2

. (6.30)

The minimum of the energy density is defined by

dE(M)
dM

=

[
M − 2g

∫ ∞

0

dp1

2π
M√

(p1)2 +M2

]

×
∫ ∞

0

dp1

π

(p1)2

((p1)2 +M2)3/2
= 0. (6.31)
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This yields the BCS-like gap equation

M = 2g
∫ ∞

0

dp1

2π
M√

(p1)2 +M2
. (6.32)

Calculating the second derivative of E(M) with respect to
M one can show that the BCS gap equation describes the
minimum of the energy density (6.30) at M �= 0. Using
the obvious relation∫ ∞

0

dp1

2π
M√

(p1)2 +M2
=
∫

d2p
(2π)2i

M

M2 − p2 − i0

=
M

4π
ln
(
1 +

Λ2

M2

)
(6.33)

we obtain the gap equation (6.32) in the form (1.14).
Using the relations between momentum integrals

(6.33) and

2
∫ ∞

0

dp1

2π
p1

(
1− p1√

(p1)2 +M2

)

= −
∫

d2p
(2π)2i

ln(M2 − p2 − i0)

+
∫

d2p
(2π)2i

2M2

M2 − p2 − i0 + C, (6.34)

where C is a infinite constant independent of M , and the
gap equation (1.14) the energy density E(M) can be trans-
formed into the form

E(M) = 1
4π

[
M2 ln

M2

Λ2 − (Λ2 +M2) ln
(
1 +

M2

Λ2

)

+
2π
g
M2

]
+ C ′, (6.35)

where C ′ is an infinite constant independent on M .
Using the normalization E(0) = 0 we obtain

E(M) = 1
4π

[
M2 ln

M2

Λ2 − (Λ2 +M2) ln
(
1 +

M2

Λ2

)

+
2π
g
M2

]
. (6.36)

This is evidence for the complete agreement of the energy
density of the BCS-like ground state with the effective
potential V [M ] given by (3.21) at ρ̄(x) =M :

E(M) = V [M ]. (6.37)

Thus, we have shown explicitly that the chirally broken
phase in the massless Thirring model is a superconducting
phase of the BCS type with the BCS non-perturbative
superconducting vacuum.
Since the energy density E(M) has a maximum at

M = 0, it is obvious that for Thirring fermions the chi-
rally broken phase is energetically preferred with respect
to the chiral symmetric phase.

One can show that fixing M = const and letting Λ →
∞ the effective potential and the energy density tend to
a finite limit E(M) = V [M ]→ −M2/4π. This means that
the energy spectrum of the ground state of the massless
Thirring model is restricted from below for Λ → ∞.
Now let investigate chiral properties of the wave func-

tion of the ground state (6.25) under chiral rotations of
the massless Thirring fermion fields:

ψ(x, t)→ ψ ′(x, t) = eiγ
5αAψ(x, t),

ψ̄(x, t)→ ψ̄
′(x, t) = ψ̄(x, t)eiγ

5αA . (6.38)

The operators of annihilation and creation transform un-
der chiral rotations (6.38) as follows [18,24]:

a(k1)→ a′(k1) = e+iαAε(k1)a(k1),

b(k1)→ b′(k1) = e−iαAε(k1)b(k1),

a†(k1)→ a†′
(k1) = e−iαAε(k1)a†(k1),

b†(k1)→ b†
′
(k1) = e+iαAε(k1)b†(k1). (6.39)

The wave function of the non-perturbative vacuum of the
massless Thirring model (6.25) is not invariant under chi-
ral rotations (6.38) and (6.39) [18,24]:

|Ω〉 → |Ω;αA〉 (6.40)

=
∏
k1

[uk1 + vk1e−2iαAε(k1)a†(k1)b†(−k1)]|0〉,

One can show that the energy density E(M) does not de-
pend on the phase of the function vk1 .
The scalar product 〈α′

A;Ω|Ω;αA〉 of the wave function
for α′

A �= αA is equal to [18,24]

〈α′
A;Ω|Ω;αA〉 = exp

{
L

2π

∫ ∞

0
dk1 (6.41)

× ln
[
1− sin2(α′

A − αA)
M2

M2 + (k1)2

]}
.

In the limit L → ∞ the wave functions |Ω;α′
A〉 and

|Ω;αA〉 are orthogonal for α′
A �= αA [18,24].

The wave function (6.25) is invariant under parity
transformation: P|Ω〉 = |Ω〉. The operator

O+ = 2
∑
p1

ε(p1)b†(−p1)a†(p1) (6.42)

is invariant under parity transformations (6.27):
PO+P† = O+. Its vacuum expectation value of the
operator O+ per unit volume can be identified with the
order parameter for the massless Thirring model in the
BCS formalism

〈O+〉 = 1
L

〈Ω|O+|Ω〉

= − 2
L

∑
p1

up1vp1

= −
∫ ∞

−∞

dp1

2π
M√

M2 + (p1)2

= −M

2π
ln
(
1 +

Λ2

M2

)
, (6.43)
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where we have used (6.33). The expectation value 〈O+〉 is
the fermion condensate

〈Ω| : ψ̄(0)ψ(0) : |Ω〉 = 〈O+〉 = −M

2π
ln
(
1 +

Λ2

M2

)
, (6.44)

where we have used 〈O+〉 = 〈O†
+〉.

Thus, we have shown that the ground state of the
massless Thirring model possesses all properties of a BCS
type superconducting vacuum, and our results obtained
by means of the path integral approach are fully repro-
ducible within the BCS formalism.

6.3 Equations of motion and integral of motion

Now let us turn to the analysis of the equations of motion.
Using the Lagrangian (6.11) we derive the equations of
motion

iγµ∂µψ(x, t) = gjµ(x, t)γµψ(x, t),
−i∂µψ̄(x, t)γµ = gψ̄(x, t)γµjµ(x, t). (6.45)

Due to the peculiarity of 1+ 1-dimensional quantum field
theories of fermion fields [32] these equations are equiva-
lent to

i∂µψ(x, t) = ajµ(x, t)ψ(x, t)

+ bεµνj
ν(x, t)γ5ψ(x, t),

−i∂µψ̄(x, t) = aψ̄(x, t)jµ(x, t)

+ bψ̄(x, t)γ5jν(x, t)ενµ, (6.46)

where the parameters a and b are constrained by the con-
dition a+ b = g6. Multiplying the equations (6.46) by γµ
and summing over µ = 0, 1 we end up with the equations
of motion (6.45).
From the equations of motion (6.46) we can get a very

important information about the evolution of fermions in
the massless Thirring model. For this we write (6.46) in
the form

−∂µ[ψ̄(x, t)ψ(x, t)] = 2bεµνjν(x, t)
× [ψ̄(x, t)iγ5ψ(x, t)],

∂µ[ψ̄(x, t)iγ5ψ(x, t)] = 2bεµνjν(x, t)
× [ψ̄(x, t)ψ(x, t)], (6.47)

exclude 2bεµνjν(x, t) and arrive at the equation

∂α([ψ̄(x, t)ψ(x, t)]2 + [ψ̄(x, t)iγ5ψ(x, t)]2) = 0. (6.48)

This means that the quantity

[ψ̄(x, t)ψ(x, t)]2 + [ψ̄(x, t)iγ5ψ(x, t)]2 = const. (6.49)

is an integral of motion. Using the equations of motion
(3.24) and going to the polar representation σ(x, t) =
ρ(x, t) cosβϑ(x, t) and ϕ(x, t) = ρ(x, t) sinβϑ(x, t) we get

[ψ̄(x, t)ψ(x, t)]2 + [ψ̄(x, t)iγ5ψ(x, t)]2

=
ρ2(x, t)
g2

= const. (6.50)

6 Below we show that a − b = 1/c where c is the Schwinger
term [33]

Substituting (6.50) in (6.48) we obtain the equation of
motion for the ρ field

∂αρ(x, t) = 0. (6.51)

This gives ρ(x, t) = ρ(0). The value of ρ(0) can be fixed
by noticing that for ∂αρ(x, t) = 0 the effective Lagrangian
of the ρ field is defined by the effective potential (3.21),
Leff [ρ(x, t)] = −V [ρ(x, t)]. In this case the equation of
motion for the ρ field reads

δLeff [ρ(x, t)]
δρ(x, t)

= −δV [ρ(x, t)]
δρ(x, t)

= 0 (6.52)

and coincides with the extremum condition (3.22) with the
solution ρ(x, t) = ρ0 = M . This implies that the solution
of (6.51) which is the equation of motion for the ρ field
should be ρ(x, t) = ρ(0) =M .
Since the terms [ψ̄(x, t)ψ(x, t)]2 and [ψ̄(x, t)iγ5ψ(x, t)]2

are positively defined, we predict ρ(x, t) �= 0. This testi-
fies the stability of the chirally broken phase during the
evolution of the fermion system described by the massless
Thirring model evolving from the symmetry broken phase.
Setting ρ(x, t) =M+ρ̃(x, t), where the ρ̃ field describes

fluctuations of the ρ field around the minimum of the ef-
fective potential, the equation of motion (6.51) reduces to
the form

∂αρ̃(x, t) = 0. (6.53)

In AppendixB we show that the ρ̃ field decouples from
the system. The direct consequence of this decoupling is
ρ̃(x, t) = 0 as solution of (6.53).
An example of classical solutions of the equations of

motion (6.45) and (6.46) for fermions evolving in the chi-
rally broken phase and obeying the integral of motion

[ψ̄(x, t)ψ(x, t)]2 + [ψ̄(x, t)iγ5ψ(x, t)]2 =
M2

g2
(6.54)

is given by the ansatz

ψ(x, t) =

√
−M
2g

(
e+ω/2e−iξ(x,t)

e−ω/2e+iη(x,t)

)
, (6.55)

where ω is a arbitrary real parameter and ξ(x, t)+η(x, t) =
βϑ(x, t). In terms of (6.55) the scalar ψ̄(x, t)ψ(x, t)and
pseudoscalar ψ̄(x, t)iγ5ψ(x, t) densities read

ψ̄(x, t)ψ(x, t) = −M
g
cosβϑ(x, t),

ψ̄(x, t)iγ5ψ(x, t) = −M
g
sinβϑ(x, t). (6.56)

The functions ξ(x, t) and η(x, t) are found in AppendixC.

6.4 Current algebra and the Schwinger term

The canonical conjugate momentum of the ψ field is de-
fined by

π(x, t) =
δL(x, t)
δ∂0ψ(x, t)

= iψ†(x, t). (6.57)
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The canonical anti-commutation relations read therefore

{ψ(x, t), π(y, t)} = iδ(x− y)

→ {ψ(x, t), ψ†(y, t)} = δ(x− y). (6.58)

Using the canonical anti-commutation relations (6.58)
one can see that the equal-time commutation relations
[jµ(x, t), jν(y, t)] vanish for each choice of µ and ν [30].
However, according to Schwinger [29] the equal-time com-
mutation relations [jµ(x, t), jν(y, t)] should read

[j0(x, t), j0(y, t)] = 0,

[j0(x, t), j1(y, t)] = ic
∂

∂x
δ(x− y),

[j1(x, t), j1(y, t)] = 0, (6.59)

where c is the Schwinger term [33].
In the massless Thirring model the Schwinger term c

has been calculated by Sommerfield [34], with the result
c = 1/π. Now let us show that this result is due to the
triviality of the vacuum in the chiral symmetric phase of
the massless Thirring model. We will get another value for
c in the spontaneously broken phase.
For this aim we evaluate the vacuum expectation value

of the equal-time commutation relation [j0(x, t), j1(y, t)].
In the one-fermion loop approximation for free fermions
with mass M , sufficient as has been shown above for the
description of the dynamics of a fermion system in the
chirally broken phase, we get

〈0|[j0(x, t), j1(y, t)]|0〉
= 〈0|[: ψ̄(x, t)γ0ψ(x, t) :, : ψ̄(y, t)γ1ψ(y, t) :]|0〉

= −
∞∫

−∞

dk
2π
eik(x−y)

∞∫
−∞

dq
4π

[
k − q√

(k − q)2 +M2

+
k + q√

(k + q)2 +M2

]
. (6.60)

For the integration over q,

∞∫
−∞

dq
4π

[
k − q√

(k − q)2 +M2
+

k + q√
(k + q)2 +M2

]

=

∞∫
−∞

dq
4π

[
q + k√

(q + k)2 +M2
− q − k√

(q − k)2 +M2

]

=

∞∫
−∞

dq
4π

1∫
−1

dα
d
dα

[
q + kα√

(q + kα)2 +M2

]

=

∞∫
−∞

dq
4π

1∫
−1

dα
kM2

((q + kα)2 +M2)3/2

=

∞∫
−∞

dq
4π

1∫
−1

dα
kM2

(q2 +M2)3/2

= k

∞∫
−∞

dq
2π

M2

(q2 +M2)3/2

= k

∫
d2q
π2i

M2

(M2 − q2 − i0)2

= k
1
π

Λ2

M2 + Λ2 , (6.61)

we used the relation

∞∫
−∞

dq
2π

M2

(q2 +M2)3/2
=
∫
d2q
π2i

M2

(M2 − q2 − i0)2 . (6.62)

The r.h.s. of (6.62) represented in relativistic invariant
form is regularized according to our approach to the eval-
uation of the effective Lagrangians (3.35) and (5.14).
Substituting (6.61) in (6.60) we obtain

〈0|[j0(x, t), j1(y, t)]|0〉
= 〈0|[: ψ̄(x, t)γ0ψ(x, t) :, : ψ̄(y, t)γ1ψ(y, t) :]|0〉
= i
1
π

Λ2

M2 + Λ2

∂

∂x
δ(x− y). (6.63)

Following Schwinger [33] and Sommerfield [34] we write
down the equal-time commutation relation

[j0(x, t), j1(y, t)] = i
1
π

Λ2

M2 + Λ2

∂

∂x
δ(x− y). (6.64)

When matching (6.64) with (6.59) we derive the Schwinger
term

c =
1
π

Λ2

M2 + Λ2 . (6.65)

For the chiral symmetric phase withM = 0 the Schwinger
term is equal to that obtained by Sommerfield c = 1/π
[34], whereas in the chirally broken phase, when M is de-
fined by (1.15), we get the new value

c =
1
π
(1− e−2π/g). (6.66)

This agrees with the dependence of β2 on g given by (4.5).

6.5 Energy-momentum tensor and its Sugawara form

The energy-momentum tensor θµν(x, t) of the fermion sys-
tem described by the Lagrangian L(x, t) is defined by

θµν(x, t) =
1
2
: ∂µψ̄(x, t)

δL(x, t)
δ∂νψ̄(, t)

:

+
1
2
:
δL(x, t)
δ∂µψ(x, t)

∂νψ(x, t) : +(µ ↔ ν)

− L(x, t)gµν . (6.67)
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For the massless Thirring model with the Lagrangian (6.1)
the energy-momentum tensor θµν(x, t) reads

θµν(x, t) =
1
4
: ψ̄(x, t)iγµ∂νψ(x, t) : (6.68)

+
1
4
: ψ̄(x, t)iγν∂µψ(x, t) :

− 1
4
: ∂µψ̄(x, t)iγνψ(x, t) :

− 1
4
: ∂νψ̄(x, t)iγµψ(x, t) :

− gµν :

[
ψ̄(x, t)iγα∂αψ(x, t)

− 1
2
gψ̄(x, t)γαψ(x, t)ψ̄(x, t)γαψ(x, t)

]
: .

As has been pointed out by Callan, Dashen and Sharp [30]
the components of the energy-momentum tensor θµν(x, t)
in the massless Thirring model obey the same equal-time
commutation relations as the components of the energy-
momentum tensor θSµν(x, t) defined in terms of the vector
current jµ(x, t) only:

θSµν(x, t) =
1
2c

[
jµ(x, t)jν(x, t) + jν(x, t)jµ(x, t)

− gµνjα(x, t)jα(x, t)
]
, (6.69)

where c is the Schwinger term. A quantum field the-
ory with currents as quantum variables and an energy-
momentum tensor of the kind (6.69) has been considered
by Sugawara [31].
A direct reduction of the energy-momentum tensor

(6.68) to Sugawara’s form (6.69) can be carried out using
the equations of motion (6.46) as shown by Sommerfield
[32]. Substituting (6.46) in (6.68) with the Lagrangian de-
fined by (6.11) we arrive at the expression:

θµν(x, t) =
1
2
(a− b)

[
jµ(x, t)jν(x, t)

+ jν(x, t)jµ(x, t)− gµνjα(x, t)jα(x, t)
]
, (6.70)

When matching (6.70) with (6.69) we infer that a − b =
1/c. In the chirally broken phase the Schwinger term is
defined by (6.66).

7 The fermion number
as a topological charge of the SG model

The topological properties of the SG model are character-
ized by the topological current J µ(x) [35]:

J µ(x, t) = β

2π
εµν∂νϑ(x, t). (7.1)

The spatial integral of its time-component, the topological
charge,

q =

∞∫
−∞

dxJ 0(x, t) =
β

2π

∞∫
−∞

dx
∂

∂x
ϑ(x, t)

=
β

2π
[ϑ(∞)− ϑ(−∞)], (7.2)

is conserved irrespective of the equations of motion and
is integer valued [35]. The field eiβϑ(x,t), where ϑ(x, t) is a
solution of the equation of motion [1],

✷ϑ(x, t) +
α

β
sinβϑ(x, t) = 0, (7.3)

maps at any time t the real axis R1 onto the circle S1

with a winding number equal to the topological charge q
[35].
For a solitary wave moving with a velocity u, the one-

soliton solution of the SG model [1],

ϑ(x, t) =
4
β
arctan

[
exp

(√
α
x− ut√
1− u2

)]
, (7.4)

the topological charge q is equal to unity:

q =
2
π
arctan

[
exp

(√
α
x− ut√
1− u2

)]∣∣∣∣
∞

−∞
= 1. (7.5)

In turn, for the anti-soliton solution, ϑ̄(x, t), given by [1]

ϑ̄(x, t) =
4
β
arctan

[
exp

(
−√

α
x− ut√
1− u2

)]
, (7.6)

the topological charge q̄ amounts to q̄ = −1.
We argue that in our approach to the bosonization of

the massive Thirring model the topological current (7.1)
coincides with the Noether current related to the global
UV(1) symmetry of the massive Thirring model. Since this
Noether current is responsible for the conservation of the
fermion number in the massive Thirring model, this allows
one to identify the topological charge with the fermion
number.
For the derivation of the Noether current we write the

effective Lagrangian of the bosonized version of the mas-
sive Thirring model (5.12) in the form

Leff(x) = −i〈x|tr ln(iγµ∂µ + γµAµ −M)|x〉+ . . . , (7.7)

where Aµ(x) = βεµν∂
νϑ(x)/2 with β defined by (4.5) and

included in the definition of the Aµ field to get the correct
kinetic term for the ϑ field.
Under infinitesimal local UV(1) rotations with a pa-

rameter αV(x) the vector field Aµ(x) transforms as7

Aµ(x)→ A′
µ(x) = Aµ(x) + ∂µαV(x), (7.8)

and the effective Lagrangian (7.7) changes as follows:

Leff(x)→ Leff [αV(x)] = Leff(x) (7.9)

+ i
〈
x

∣∣∣∣tr
{

1
M − iγν∂ν − γνAν

γµ
}∣∣∣∣x

〉
∂µαV(x).

7 Transformations of fermion fields under local UV(1) rota-
tions with a parameter αV(x) are defined by (6.2)
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The Noether current is defined by [22]

Jµ(x) = −δLeff [αV(x)]
δ∂µαV(x)

(7.10)

= −i
〈
x

∣∣∣∣tr
{

1
M − iγν∂ν − γνAν

γµ
}∣∣∣∣x

〉
.

The explicit calculation of the matrix element in the r.h.s.
of (7.10) gives

Jµ(x) =
1
2π
(1− e−2π/g)Aµ(x) =

2
β
εµν∂νϑ(x), (7.11)

where we have used relation (4.5).
Thus, the topological current J µ(x) of (7.1) is propor-

tional to the Noether current (7.11) with β2/4π as coeffi-
cient of proportionality.
Since the topological current coincides with the

Noether current related to the UV(1) symmetry of the
massive Thirring model, which is responsible for the con-
servation of the fermion number, the topological charge q
has the meaning of the fermion number.
This leads to the conclusion that the solitons of the

SG model can be identified with fermions, as conjectured
by Skyrme [4].
It is interesting to note that the mass of the soliton [1]

Msol = 8(α)1/2/β2 can be represented in a form resem-
bling the Gell-Mann–Oakes–Renner low-energy theorem
for the mass spectrum of low-lying pseudoscalar mesons
[36]

M2
sol =

64α
β4 = − 64

β2m〈ψ̄ψ〉+O(m2), (7.12)

where we have used (4.5) and (5.15).

8 Chiral symmetry breaking
in the massless Thirring model
and the Mermin–Wagner theorem

In this section we would like to show that our approach to
the bosonization of the massless Thirring model does not
contradict the Mermin–Wagner theorem [25]. According
to this theorem there is no spontaneously broken contin-
uous symmetry in two-dimensional quantum field theo-
ries. The essence of the Mermin–Wagner theorem can be
illustrated by the classical Heisenberg model with a con-
tinuous O(n) symmetry, where dynamical variables are
unit vectors Si on a sphere [27]. Following Mermin and
Wagner [25] one can show [27] that there is no sponta-
neous magnetization for n < 3. The applicability of the
Mermin–Wagner theorem to 1 + 1-dimensional quantum
field theories has been pointed out in [26,37,38] (see also
[27,28]). From a dynamical point of view the Mermin–
Wagner theorem states the absence of long-range order in
1 + 1-dimensional quantum field theories.
In this connection Coleman [26] argued that in a 1+1-

dimensional quantum field theory of a massless scalar field

there are no Goldstone bosons. They accompany, accord-
ing to Goldstone’s theorem [39], the spontaneous breaking
of a continuous symmetry. In order to prove this statement
Coleman considered a quantum field theory of a massless
free scalar field ϕ(x, t) with the Lagrangian

L(x, t) = 1
2
∂µϕ(x, t)∂µϕ(x, t). (8.1)

The equation of motion of the ϕ field reads

✷ϕ(x, t) = 0. (8.2)

The Lagrangian (8.1) is invariant under the field transla-
tions [40]

ϕ(x, t)→ ϕ′(x, t) = ϕ(x, t)− 2αA, (8.3)

where αA is an arbitrary parameter. The conserved cur-
rent associated with these field translations is equal to
[40]

jµ(x, t) = ∂µϕ(x, t). (8.4)

The total “charge” is defined by the time-component of
jµ(x, t) [40],

lim
L→∞

Q(t) = lim
L→∞

∫ L/2
−L/2

dx
∂

∂t
ϕ(x, t), (8.5)

where L is the volume occupied by the system.
It is well known that the spontaneous breaking of a

continuous symmetry occurs when the ground state of
the system is not invariant under the symmetry group
[40]. The ground state of the system described by the
Lagrangian (8.1) is not invariant under field translations
(8.3) [40]. Thereby, the field-translation symmetry should
be spontaneously broken and a Goldstone boson should
appear [40].
The absence of Goldstone bosons in the quantum field

theory described by the Lagrangian (8.1) Coleman argued
by stating the impossibility to construct a massless scalar
field operator (see also [27]). This statement has been sup-
ported by the analysis of the two-point Wightman func-
tion [26,27]:

〈0|ϕ(x, t)ϕ(0)|0〉 =
∫
d2k
2π

θ(k0)δ(k2)eik
0t−ik1x

=
1
2π

∫ ∞

0

dk1

k1
cos(k1x)eik

1t, (8.6)

which is defined by a meaningless infrared divergent in-
tegral. No subtraction procedure can be devised to cir-
cumvent this difficulty without spoiling the fundamental
properties of field theory, for instance, positivity of the
Hilbert space metric. A massless scalar field theory is un-
defined in a two-dimensional world due to severe infrared
divergences [27]. This corresponds to the destruction of
long-range order pointed out by Mermin and Wagner [27].
However, in spite of the widely accepted statement by

Coleman about the absence of Goldstone bosons in a 1+1-
dimensional quantum field theory described by the La-
grangian (8.1) we argue, nevertheless, that in this theory
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the field-translation symmetry is spontaneously broken in
the sense of the non-invariance of the ground state under
transformations (8.3) and Goldstone bosons appear.
Indeed, it has been pointed out by Itzykson and Zuber

that in the case of the quantum field theory described by
the Lagrangian (8.1) the Goldstone boson is the quantum
of the ϕ field itself [40]. Then, the non-invariance of the
ground state of the system can be demonstrated by acting
with the operator exp{−2iαAQ(0)} on the vacuum wave
function |0〉, i.e. |αA〉 = exp{−2iαAQ(0)}|0〉 [40].
For the calculation of |αA〉 we follow Itzykson and Zu-

ber [40] and use the Fourier decomposition of the massless
scalar field ϕ(x, t):

ϕ(x, t) =
∫ ∞

−∞

dk1

2π
1
2k0

(8.7)

×
[
a(k1)e−ik0t+ik1x + a†(k1)eik

0t−ik1x
]
,

where k0 = |k1|, then a(k1) and a†(k1) are annihilation
and creation operators obeying the standard commutation
relation

[a(k1), a†(q1)] = (2π)2k0δ(k1 − q1). (8.8)

From (8.5) we obtain the total “charge” operator Q(0)
[40]

Q(0) = − i
2
[a(0)− a†(0)]. (8.9)

Then, we get the wave function |αA〉
|αA〉 = e−2iαAQ(0)|0〉 = e−αA[a(0)−a†(0)]|0〉. (8.10)

For the subsequent mathematical operations with the
wave functions |αA〉 it is convenient to use the regular-
ization procedure suggested by Itzykson and Zuber. We
define the regularized operator Q(0)R as follows [40]:

Q(0)R = lim
L→∞

∫ ∞

−∞
dx

∂

∂t
ϕ(x, t)

∣∣∣∣
t=0
e−x

2/L2
. (8.11)

The regularized wave function |αA〉R reads then
|αA〉R = e−2iαAQ(0)R |0〉

= lim
L→∞

exp

{
− αAL

2
√
π

∫ ∞

−∞
dk1

× [a(k1)− a†(k1)]e−L
2(k1)2/4

}
|0〉. (8.12)

The energy operator of the massless scalar field described
by the Lagrangian (8.1) is equal to

Ĥ(t) =
∫ ∞

−∞
dxH(x, t)

=
1
2

∫ ∞

−∞
dx :

[(
∂ϕ(x, t)
∂t

)2

+
(
∂ϕ(x, t)
∂x

)2
]
:

=
∫ ∞

−∞

dk1

2π
a†(k1)a(k1). (8.13)

One can easily show that the wave functions |αA〉R are
eigenfunctions of the energy operator (8.13) for the eigen-
value zero

Ĥ(t)|αA〉R = E(αA)|αA〉R = 0. (8.14)

This is evidence that the energy of the vacuum state is in-
finitely degenerated, and the vacuum state is not invariant
under the field translations (8.3). The wave functions of
the vacuum state |αA〉R and |α′

A〉R are not orthogonal to
each other for α′

A �= αA and the scalar product R〈α′
A|αA〉R

amounts to [40]

R〈α′
A|αA〉R = e−(α′

A−αA)2/2. (8.15)

However, since the eigenvalue of the wave functions |αA〉
is zero, they can be orthogonalized by any appropriate
orthogonalization procedure as used in molecular and nu-
clear physics.
We would like to emphasize that the results expounded

above are not related to the impossibility to determine the
two-point Wightman function (8.6) in the infrared region
of ϕ field fluctuations. In fact, the analysis of the non-
invariance of the vacuum wave function under the symme-
try transformations (8.3) treats the massless scalar field
at the tree level. This is an appropriate description, since
the massless scalar field ϕ is free, no vacuum fluctuations
are entangled and the quanta of the massless ϕ field are
on mass shell.
Thus, following the Itzykson–Zuber analysis of the 1+

1-dimensional massless scalar field theory of the ϕ field
described by the Lagrangian (8.1) we have shown that

(i) the translation symmetry (8.3) is spontaneously bro-
ken,

(ii) Goldstone bosons appear and they are quanta of the
ϕ field,

(iii) the ground state is not invariant under the field-
translation symmetry and

(iv) (iv) the energy of the ground state is infinitely de-
generated. Hence, all requirements for a continuous
symmetry to be spontaneously broken are available
in the 1 + 1-dimensional quantum field theory of
a massless scalar field described by the Lagrangian
(8.1).

Now let us show that chiral symmetry in our approach
to the massless Thirring model is spontaneously broken,
i.e. the wave function of the ground state is not invari-
ant under chiral rotations and a Goldstone boson exists.
The fact of the non-invariance of the ground state of the
massless Thirring model under chiral rotations has been
demonstrated in (6.40). The Goldstone bosons are the
quanta the ϑ field and the effective Lagrangian of the
fermion system, quantized around the minimum of the ef-
fective potential (3.21), is invariant under chiral rotations.
In order to show this we suggest to rewrite the partition
function (3.29) as follows:

ZTh =
∫

DϑDψDψ̄ exp i
∫
d2xLeff [ψ̄, ψ;ϑ], (8.16)
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where the effective Lagrangian Leff [ψ̄, ψ;ϑ] is determined
by

Leff [ψ̄, ψ;ϑ] = ψ̄(x)(iγµ∂µ −Meiγ
5βϑ(x))ψ(x). (8.17)

For convenience we have renormalized the ϑ field and the
parameter β is given by (4.5). The Lagrangian (8.17) is
invariant under chiral rotations (6.38)

Leff [ψ̄, ψ;ϑ]→ Leff [ψ̄′, ψ′;ϑ′]

= ψ̄′(x)(iγµ∂µ −Meiγ
5βϑ′(x))ψ′(x), (8.18)

where the field ϑ′(x) is defined by

ϑ′(x) = ϑ(x)− 2αA/β. (8.19)

Such an invariance under chiral rotations is trivially ex-
plained by the Mexican-hat shape of the effective potential
(3.21) depicted in Fig. 2 allowing arbitrary changes of the
ϑ field around the hill at fixed ρ.
In the bosonic description the effective Lagrangian

(8.17) is equivalent to the effective Lagrangian depending
only on the ϑ field (3.35)

Leff [ψ̄, ψ;ϑ]→ Leff [ϑ] =
1
2
∂µϑ(x)∂µϑ(x), (8.20)

which is invariant under field translations (8.19) caused
by chiral rotations.
Thus, the fermionic system described by the mass-

less Thirring model and quantized around the minimum
of the effective potential (3.21) satisfies all requirements
for a spontaneously broken chiral symmetry as has been
discussed above (8.7)–(8.15). This is evidence that the
bosonization of this fermionic system runs via the chirally
broken phase and is finally described by the Goldstone
boson field ϑ.
For the calculation of the effective Lagrangian (8.20)

we break chiral symmetry explicitly by a local chiral ro-
tation

ψ(x)→ e−iγ5βϑ(x)/2ψ(x). (8.21)

This reduces the effective Lagrangian (8.17) to the form

Leff [ψ̄, ψ;ϑ]

= ψ̄(x)
(
iγµ∂µ +

1
2
βγµεµν∂

νϑ(x)−M

)
ψ(x). (8.22)

The term proportional to M breaks chiral symmetry ex-
plicitly

Leff [ψ̄, ψ;ϑ]→ Leff [ψ̄′, ψ′;ϑ′] (8.23)

= ψ̄′(x)
(
iγµ∂µ +

1
2
βγµεµν∂

νϑ(x)−Me−2iγ5αA

)
ψ′(x).

Such a violation of chiral invariance is caused by a gauge
fixing specifying the starting point at the Mexican-hat
for counting of the chiral phase of a fermion field dur-
ing a travel around the hill. Due to the Abelian symmetry

Faddeev–Popov ghosts do not appear and the Faddeev–
Popov determinant is equal to unity.
Let us show that such a gauge fixing does not affect the

result. The evaluation of the effective Lagrangian of the ϑ
field does not depend on αA and coincides with (8.20).
Indeed, the effective Lagrangian of the ϑ field is defined

by the two-vertex fermion diagram

Leff(x) = − 1
8π

∫
d2x1d2k1
(2π)2

e−ik1·(x1−x)Aµ(x)Aν(x1)

×
∫
d2k
πi
tr
{

1

Me−2iγ5αA − k̂
γµ

× 1

Me−2iγ5αA − k̂ − k̂1
γν
}

= − 1
8π

∫
d2x1d2k1
(2π)2

e−ik1·(x1−x)Aµ(x)Aν(x1)

×
∫
d2k
πi
tr

{
Me−2iγ5αA + k̂

M2 − k2
γµ

×Me
−2iγ5αA + k̂ + k̂1
M2 − (k + k1)2 γν

}

= − 1
8π

∫
d2x1d2k1
(2π)2

e−ik1·(x1−x)Aµ(x)Aν(x1)

×
∫
d2k
πi
tr

{
1

M2 − k2
1

M2 − (k + k1)2

×
[
Me−2iγ5αAγµMe−2iγ5αAγν

+k̂γµMe−2iγ5αAγν +Me−2iγ5αAγµ(k̂ + k̂1)γν

+ k̂γµ(k̂ + k̂1)γν
]}

. (8.24)

The second and the third terms vanish due to the trace
over Dirac matrices. Therefore, the r.h.s. of (8.24) does not
depend on αA and the result of the evaluation of the mo-
mentum integral leads to the effective Lagrangian (8.20).
This Lagrangian of the ϑ field is invariant under ϑ field
translations (8.19) caused by chiral rotations. As the vac-
uum of the ϑ field is not invariant under (8.19), the sym-
metry becomes spontaneously broken in the way described
above and the Goldstone boson is the quantum of the ϑ
field [40].
This result agrees completely with the derivation of

effective chiral Lagrangians within the ENJL model with
chiral U(NF ) × U(NF ) [19–22], where NF is the number
of quark flavors. In fact, the starting Lagrangian of the
ENJL model with massless quark fields is invariant un-
der the chiral group U(NF ) × U(NF ). Then, via the chi-
rally broken phase with dynamical quarks the Lagrangian
of the ENJL model after the integration over quark de-
grees of freedom acquires the form of the effective chiral
Lagrangian containing only local boson fields. This effec-
tive chiral Lagrangian is invariant under the chiral group
U(NF )×U(NF ) [19–22]. However, the bosonic system de-
scribed by this effective chiral Lagrangian is not stable un-
der symmetry breaking, and the phase of spontaneously
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broken chiral symmetry is energetically preferable. In this
spontaneously broken phase all vacuum expectation val-
ues of local bosonic fields are defined by parameters of the
chirally broken phase of the quark system described by
the ENJL model [19–22].
Now we are able to discuss the problem of the vanish-

ing of the vacuum expectation value of ψ̄(x)ψ(x) in (4.19).
Using the Abelian bosonization rules (4.17) we get

〈0|ψ̄(x)ψ(x)|0〉 = 〈0|[σ+(x) + σ−(x)]|0〉
=
1
2
Z−1〈ψ̄ψ〉〈0|[A−(x) +A+(x)]|0〉

=
1
2
Z−1〈ψ̄ψ〉

×
∫

Dϑe−i(1/2)
∫

d2zϑ(z)(✷+µ2)ϑ(z)

×(eiβϑ(x) + e−iβϑ(x))

= Z−1〈ψ̄ψ〉e(1/2)β2i∆(0)

= Z−1〈ψ̄ψ〉
( µ
M

)β2/4π
. (8.25)

The cut-off µ has been introduced by Coleman [3] in order
to regularized the two-point Green function of the ϑ field
in the infrared region. Therefore, a regularized correlation
function should be obtained in the limit µ → 0. Setting
µ = 0 we get

〈0|ψ̄(x)ψ(x)|0〉R = 0. (8.26)

We would like to emphasize that in our approach the van-
ishing of the fermion condensate (8.26) is not due to the
triviality of the vacuum. Our vacuum is essentially differ-
ent from the vacua which were used in [3,5–16] as we have
explained in Sects. 4–6.
As has been stated by Itzykson and Zuber [27] such

a vanishing of the correlation function 〈0|ψ̄(x)ψ(x)|0〉 is
caused by the sorrowful fact that a massless scalar field
theory is undefined in a 1 + 1-dimensional world due to
severe infrared divergences. [27]. The former leads to a
randomization of the ϑ field in the infrared region that
averages 〈0|[A−(x) +A+(x)]|0〉 to zero [27,28].
Since the problem of the vanishing of the correlation

function (8.26) is related to full extent to the definition of
the massless scalar field in 1 + 1-dimensional space-time,
we suggest to regularize the correlation function (8.25)
within dimensional regularization. In dimensional regu-
larization the two-point Green function of the ϑ field de-
scribed by the effective Lagrangian (8.20) is defined by

i∆(x− y) =
∫

d2p
(2π)2i

1
p2 + i0

e−ip·(x−y) (8.27)

→
∫

ddp
(2π)di

λ2−d

p2 + i0
e−ip·(x−y)

= − 1
4πd/2

[−λ2(x− y)2]((2−d)/2)Γ
(
d− 2
2

)
,

where λ is a dimensional parameter making the Green
function dimensionless. We fix this parameter below. In

order to obtain the regularized value i∆(0)R, we keep d =
2− ε and set x− y = 0. This yields i∆(0)R = 0.
The same result can be obtained within analytical reg-

ularization

i∆(x− y) =
∫

d2p
(2π)2i

1
p2 + i0

e−ip·(x−y) (8.28)

→ −
∫

d2p
(2π)2i

λ2α−2

(−p2 + i0)α e
−ip·(x−y)

= − 1
4απ

[−λ2(x− y)2]α−1Γ (1− α)
Γ (α)

.

Keeping α = 1+ ε/2 at ε → +0 we get again i∆(0)R = 0.
Using the regularized Green function i∆(0)R = 0

the vacuum expectation value of the fermion condensate
(8.25) is equal to

〈0|ψ̄(x)ψ(x)|0〉R = Z−1〈ψ̄ψ〉e(1/2)β2i∆(0)R

= Z−1〈ψ̄ψ〉. (8.29)

Since there are no divergences we should set Z = 1. This
gives the fermion condensate

〈0|ψ̄(x)ψ(x)|0〉R = 〈ψ̄ψ〉, (8.30)

which is in complete agreement with our result obtain
within the BCS formalism.
Thus, we have shown that the problem of the fermion

condensate, averaged to zero by the ϑ field fluctuations,
can be avoided by using dimensional or analytical regu-
larization.
The solution of the massless Thirring model in the

sense of an explicit evaluation of any correlation function

〈
0

∣∣∣∣∣∣T

 p∏
i=1

n∏
j=1

σ+(xi)σ−(yj)



∣∣∣∣∣∣ 0
〉

(8.31)

runs as follows. Using the Abelian bosonization rules
(4.17) the fermion correlation function (8.31) reduces to
the ϑ field correlation function〈

0

∣∣∣∣∣∣T

 p∏
i=1

n∏
j=1

σ+(xi)σ−(yj)



∣∣∣∣∣∣ 0
〉

(8.32)

=
〈ψ̄ψ〉p+n
(2Z)p+n

〈
0

∣∣∣∣∣∣T

 p∏
i=1

n∏
j=1

A−(xi)A+(yj)



∣∣∣∣∣∣ 0
〉

=
〈ψ̄ψ〉p+n
(2Z)p+n

×
∫

Dϑe−i(1/2)
∫

d2xϑ(x)✷ϑ(x)A−(xi)A+(yj)

=
〈ψ̄ψ〉p+n
(2Z)p+n

exp
{
1
2
β2(p+ n)i∆(0)

}

× exp

β2

p∑
j<k

i∆(xj − xk)
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+ β2
n∑
j<k

i∆(yj − yk)− β2
p∑
j=1

n∑
k=1

i∆(xj − yk)




=
〈ψ̄ψ〉p+n
(2Z)p+n

exp


β2

p∑
j<k

i∆(xj − xk)

+ β2
n∑
j<k

i∆(yj − yk)− β2
p∑
j=1

n∑
k=1

i∆(xj − yk)


 ,

where we have used i∆(0)R = 0 obtained within dimen-
sional and analytical regularization. Assuming now that
all relative distances do not vanish, we should take the
limits ε → +0 and take away the dimensional or analyti-
cal regularization of the two-point Green functions. In the
limit ε → +0 the Green function i∆(x− y) reads

i∆(x− y) =
1
2πε

+
1
4π
ln[−λ2(x− y)2]. (8.33)

Absorbing the divergent parts of the Green functions in
the constant Zp+n we obtain the regularized correlation
function〈

0

∣∣∣∣∣∣T

 p∏
i=1

n∏
j=1

σ+(xi)σ−(yj)



∣∣∣∣∣∣ 0
〉

(8.34)

=
〈ψ̄ψ〉p+n
2p+n

×

p∏
j<k

[−λ2(xj − xk)2]β
2/4π

n∏
j<k

[−λ2(yj − yk)2]β
2/4π

p∏
j=1

n∏
k=1

[−λ2(xj − yk)2]β
2/4π

=
〈ψ̄ψ〉p+n
2p+n

λ(β2/(4π))[(p−n)2−(p+n)]

×

p∏
j<k

[−(xj − xk)2]β
2/4π

n∏
j<k

[−(yj − yk)2]β
2/4π

p∏
j=1

n∏
k=1

[−(xj − yk)2]β
2/4π

.

In order to fix a parameter λ we suggest to compare
our expression for the correlation function of self-coupled
fermion fields (8.34) with the correlation function of free
fermion fields calculated by Klaiber [5] for p = n and
space-like distances:〈

0

∣∣∣∣∣T
(
n∏
i=1

σ+(xi)σ−(yi)

)∣∣∣∣∣ 0
〉

(8.35)

=
1

(2π)2n

n∏
j<k

[−(xj − xk)2]
n∏
j<k

[−(yj − yk)2]

n∏
j=1

n∏
k=1

[−(xj − yk)2]

.

Taking the mathematical limit β2/4π → 1 and setting
p = n we obtain from the comparison of (8.34) and (8.35)
that λ = ±π〈ψ̄ψ〉. It is reasonable to choose λ positive,
λ = −π〈ψ̄ψ〉. Using this expression for λ we recast the
correlation function (8.34) into the form

〈
0

∣∣∣∣∣∣T (
p∏
i=1

n∏
j=1

σ+(xi)σ−(yj))

∣∣∣∣∣∣ 0
〉

(8.36)

=
〈ψ̄ψ〉p+n
2p+n

[−π〈ψ̄ψ〉](β2/(4π))[(p−n)2−(p+n)]

×

p∏
j<k

[−(xj − xk)2]β
2/4π

n∏
j<k

[−(yj − yk)2]β
2/4π

p∏
j=1

n∏
k=1

[−(xj − yk)2]β
2/4π

.

Thus, dimensional (or analytical) regularization of the
theory for the massless scalar ϑ field leads to the expres-
sions for correlation functions which agree fully with the
BCS formalism. We should emphasize that the r.h.s. of
(8.34) does not vanish even if p �= n. Recall, that the
vacuum expectation value (8.30) calculated for the trivial
chiral invariant vacuum vanishes for p �= n [3,5]. The ex-
plicit evaluation of the correlation function (8.31) in the
form (8.36) implies the solution of the massless Thirring
model in our approach.
The obtained results show that a massless scalar field

theory in 1 + 1-dimensional space-time is ill-defined in
agreement with Coleman’s statements. Therefore, in the
infrared region there are no single-particle Goldstone
states [26]. The Goldstone bosons being the quanta of the
ϑ field exist in the infrared region in the form of random-
ized ensemble. The fermion condensate, averaged over the
ϑ field, vanishes due to the contribution of the randomized
ensemble of infrared Goldstone bosons. Since it is fully
a dimensional problem the application of dimensional (or
analytical) regularization allows one to escape the problem
of the randomization of low-frequency quanta of the mass-
less scalar field ϑ and calculate the non-vanishing value of
the fermion condensate averaged over the ϑ field fluctu-
ations in agreement with the result obtained within the
BCS formalism (6.32) and (1.14).

9 Conclusion

We investigated the problem of the solution of the massless
Thirring model and the equivalence between the massive
Thirring model and the SG model in the chirally broken
phase of the fermion system. We found that the fermion
system described by the massless Thirring model, invari-
ant under the chiral group UV(1) × UA(1), possesses a
chiral symmetric phase with a trivial perturbative vac-
uum and a phase of spontaneously broken chiral symme-
try with a non-perturbative vacuum. We have shown that
the ground state of the massless Thirring model in the
chirally broken phase coincides with the ground of the
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BCS theory of superconductivity. Using the wave func-
tion of the ground state in the BCS theory of supercon-
ductivity we have calculated the energy density of the
non-perturbative vacuum E(M) in the massless Thirring
model. We have shown that the energy density of the non-
perturbative vacuum E(M) coincides with the effective po-
tential V [M ] (3.21), which is defined by the integration
over fermion field fluctuations, and acquires a minimum
when the dynamical mass M of fermions satisfies the gap
equation (1.14). The mass spectrum of vacuum fluctua-
tions of fermions is restricted from below. In fact, when
M is kept constant at Λ → ∞ the energy density tends to
the limit E(M) = V [M ]→ −M2/4π.
The chiral symmetric phase corresponds to a system

with massless fermions, M = 0, and vanishing fermion
condensate. The chirally broken phase is characterized by
(i) a non-zero value of a fermion condensate, (ii) the ap-
pearance of dynamical fermions with a dynamical mass
M �= 0 and (iii) fermion–anti-fermion pairing [18]. The
energy density of the ground state of the fermion system
E(M) reaches a maximum, E(0) = 0, in the chiral symmet-
ric phase and it is negative, E(M) < 0, in the chirally bro-
ken one. Hence, the chirally broken phase is energetically
preferable and the Thirring model should be bosonized in
the chirally broken phase accompanied by fermion–anti-
fermion pairing.
Using the path integral technique we bosonized ex-

plicitly the massless Thirring model. We have shown that
in the bosonic description the massless Thirring model
is a quantum field theory of a massless free scalar field
ϑ(x). The generating functional of Green functions in the
massless Thirring model can be expressed in terms of a
path integral over the massless scalar field ϑ(x) coupled
to external sources of fermion fields via A±(x) = e±iβϑ(x)

couplings. This allows one to represent any Green func-
tion in the massless Thirring model in the fermionic
description by a Gaussian path integral of products of
A±(x) = e±iβϑ(x) couplings in the bosonic formulation.
Since these Gaussian path integrals can be calculated ex-
plicitly, this provides a solution of the massless Thirring
model.
The evaluation of correlation functions of massless

Thirring fermions by means of the integration over mass-
less ϑ field fluctuations is related to the Mermin–Wagner
theorem [25], Hohenberg’s [37] and Coleman’s [26] proofs
concerning the vanishing of long-range order for sys-
tems with a continuous symmetry described by quan-
tum field theories in two-dimensional space [25,38] and
1 + 1-dimensional space-time [26]. The vanishing of the
long-range order parameter implies that there is no spon-
taneously broken continuous symmetry in quantum field
theories defined in two-dimensional space and a 1 + 1-
dimensional space-time.
Coleman’s proof of this statement has been focused

upon the impossibility to define a free massless scalar
field theory in a 1 + 1-dimensional space-time. Coleman
found that a free massless scalar field theory is ill-defined
due to meaningless infrared divergences that screen fully
one-particle Goldstone boson states. This screening of a

pole singularity in the Fourier transform of the two-point
Wightman function is formulated by Coleman as the ab-
sence of the Goldstone bosons in a free massless scalar
field theory in a 1+1-dimensional space-time. This state-
ment has been extended by Coleman onto any quantum
system with a continuous symmetry embedded in a 1+1-
dimensional space-time [26].
The relation of Coleman’s statement to the Mermin–

Wagner–Hohenberg theorem [25,38] runs in the way ex-
plained, for example, in [27,28]. In fact, the infrared di-
vergences of a free massless scalar fields lead to the ap-
pearance of a randomized ensemble of very low-frequency
quanta of a massless scalar field. Due to this randomiza-
tion the fermion condensate, proportional to cosβϑ(x),
averages over the ϑ field fluctuations to zero.
Using Itzykson–Zuber’s analysis of a free massless

scalar field theory [40] and adjusting it to 1+1-dimensional
space-time we have shown that (i) a continuous symme-
try related to global scalar field translations is sponta-
neously broken, (ii) the vacuum wave function is not in-
variant under symmetry transformations and the vacuum
energy level is infinitely degenerated. Following Itzykson
and Zuber [40] we argue that Goldstone bosons appear as
quanta of a free massless scalar field.
Accepting this point that a continuous symmetry of a

quantum field theory of a free massless scalar field can be
spontaneously broken, we have suggested that the prob-
lem of the vanishing of the fermion condensate in the
massless Thirring model, averaged over the randomized
ensemble of low-frequency quanta of the θ field, can be
solved within an appropriate regularization. We have ap-
plied dimensional and analytical regularizations. By virtue
of these regularization procedures we have succeeded in
smoothing the infrared behavior of the ϑ field and get
the fermion condensate averaged over the ϑ field fluctu-
ations to a non-zero value, in complete agreement with
our results obtained within the Nambu–Jona–Lasinio pre-
scription (1.13)–(1.16) and the BCS formalism (6.32).
The bosonization of the massive Thirring model runs

parallel the bosonization of the massless one. Starting with
the fermion system in the phase of spontaneously broken
chiral symmetry we arrive at the bosonized version de-
scribed by the SG model. The parameters of the SG model
can be expressed in terms of the parameters of the massive
Thirring model and read

α = −β2m〈ψ̄ψ〉+ m2

g
β2,

where the fermion condensate is defined by (1.16) and the
coupling constant β depends on g via relation (4.5)

8π
β2 = 1− e−2π/g.

The new relation between β and g leads to the fact that in
our approach the coupling constant β2 is always greater
than 8π, β2 > 8π. This disagreement with Coleman [3] is
caused by different initial conditions for the evolution of
the fermion system described by the Thirring model. In
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fact, when the fermion system evolves in the chiral sym-
metric phase Coleman’s relation between β and g is valid.
In turn, if the fermion system starts with the chirally bro-
ken phase the bosonized version of the fermion system is
described by the SG model with the relation between β
and g given by (4.5) and α = −β2m〈ψ̄ψ〉+m2β2/g.
The evaluation of correlation functions in the massive

Thirring model in terms of the path integral over the SG
model field can be carried by the Abelian bosonization
rules given by (5.21)

Zmψ̄(x)
(
1∓ γ5

2

)
ψ(x) = − α

2β2 e
±iβϑ(x) +

m2

2g
.

At leading order in the m expansion this expression re-
duces to the Abelian bosonization rules derived by Cole-
man (1.10) [3].
The existence of the chirally broken phase in the mass-

less Thirring model we have also confirmed within the
standard operator formalism. We have shown that start-
ing with the chiral invariant Lagrangian and normal or-
dering the fermion operators in the interaction term at
the scale M we arrive at the Lagrangian of the massive
Thirring model for fermions with mass M only if the gap
equation (1.13) is fulfilled. Using the equations of motion
for the fermion fields in the massless Thirring model we
have shown that the chirally broken phase is stable dur-
ing the evolution of the fermion system when it started to
evolve from the chirally broken phase.
The stability of the chirally broken phase with the non-

perturbative vacuum could in principle be destroyed by
the contribution of the fluctuations of the ρ field around
the minimum of the effective potential (3.21), the ρ̃ field
fluctuations8. In AppendixB we have shown that the ρ̃
field, rescaled in an appropriate way in order to get the
correct kinetic term, acquires a mass proportional the
cut-off Λ and in the limit Λ → ∞ becomes fully de-
coupled from the system. This result agrees completely
with the Appelquist–Carazzone decoupling theorem [41].
This testifies that the chirally broken phase with the non-
perturbative vacuum cannot be ruined by fluctuations
around the minimum of the effective potential and is fully
determined by the effective potential (3.21).
We have revealed that the existence of the chirally bro-

ken phase in the massless Thirring model changes crucially
the Schwinger term in the equal-time commutation rela-
tion [j0(x, t), j1(y, t)]. We have shown that the Schwinger
term calculated for the non-perturbative vacuum in the
chirally broken phase depends explicitly on the coupling
constant g. For the chiral symmetric phase and the trivial
vacuum the Schwinger term is equal to the value calcu-
lated previously by Sommerfield [34]. In the limit g → 0
our value of the Schwinger term reduces to that obtained
by Sommerfield.
Now let us clarify the physical meaning of the inequal-

ity β2 > 8π obtained in our approach. For this aim we
suggest to rescale the ϑ field, βϑ(x)→ ϑ(x). Then in nat-
ural units � = c = 1 the action S reads

8 This question has been raised by Valerii Rubakov

S =
1
β2

∫
d2x

[
1
2
∂µϑ(x)∂µϑ(x) + α(cosϑ(x)− 1)

]
,

(9.1)

with 0 ≤ ϑ(x) ≤ 2π. This allows one to interpret β2 in
the sense of “�” distinguishing “quantum” and “classical”
states of the SG model. In the classical limit, β2 → 0, we
arrive at a system of classical Klein–Gordon waves and
solitons. The action S

S =
1
β2

∫
d2x

[
1
2
∂µϑ(x)∂µϑ(x)

+ β2
(

−m〈ψ̄ψ〉+ m2

g

)
(cosϑ(x)− 1)

]
, (9.2)

where for simplicity we have kept the leading terms in the
m expansion, describes in the β2 → 0 limit a theory of
massless classical ϑ-waves

ϑ(x, t) = ϑ−(t− x) + ϑ+(t+ x) (9.3)

obeying

✷ϑ(x, t) =
(
∂2

∂t2
− ∂2

∂x2

)
ϑ(x, t) = 0, (9.4)

with arbitrary functions ϑ−(t − x) and ϑ+(t + x). The
mass of Goldstone bosons caused completely by quantum
effects, Mϑ = (−mβ2〈ψ̄ψ〉)1/2, vanishes in the limit β2 →
0. In turn, the soliton mass tends to infinity,Msol ∝ 1/β →
∞, and solitons decouple from the system.
For β2 > 8 the mass of the Goldstone boson becomes

greater than the mass of a single soliton:

Msol

Mϑ
=
8
β2 < 1. (9.5)

This implies that in the “quantum limit”, β2 � 1, the cre-
ation of non-perturbative soliton configurations is energet-
ically preferable with respect to the creation of Goldstone
bosons. This yields that at β2 > 8π, when Mϑ � Msol,
the Goldstone bosons are decoupled from the system and
there exist practically only solitons. Hence, the inequality
β2 > 8π corresponds to the non-perturbative phase of the
SG model populated by soliton states only.
We have shown that the topological current of the SG

model coincides with the Noether current of the massive
Thirring model related to the UV(1) invariance. Since this
Noether current is responsible for the conservation of the
fermion number in the massive Thirring model, the topo-
logical charge of the SG model has the meaning of the
fermion number. Since many-soliton solutions obey Pauli’s
exclusion principle, this should prove Skyrme’s statement
[4] that the SG model solitons can be interpreted as mas-
sive fermions. Thus, via spontaneously broken chiral sym-
metry the massive Thirring fermions get converted into
extended particles with the properties of fermions and
masses much heavier than their initial mass

M2
sol = − 64

β2m〈ψ̄ψ〉+O(m2)� m2.
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Finally, we would like to mention that recently [42] one of
the authors suggested a generalization of the sine-Gordon
model to 3+1-dimensions. This model has also stable soli-
tonic excitations characterized by a winding number defin-
ing a chirality for fermions. The results obtained in the
present paper can be of use for the derivation of the
model suggested in [42] as a bosonized version of the 3+1-
dimensional NJL model with chiral SU(2)× SU(2).
Numerous applications to hadron physics of the chi-

ral soliton model based on the linear σ model of Gell–
Mann and Levy, the extended linear σ model and the
Nambu–Jona–Lasinio quark model with SU(2) × SU(2)
and SU(3)×SU(3) chiral symmetry one can find in papers
written by Göke with co-workers starting in 1985 [43].
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Appendix A. Chiral Jacobian

In this appendix we adduce the calculation of the Jacobian
induced by chiral rotations in (3.30). We show that by
using an appropriate regularization scheme this Jacobian
can be found to be equal to unity. We follow the procedure
formulated in [12–17]. For the calculation of the chiral
Jacobian we start with the Lagrangian implicitly defined
in (3.29) and (3.30)

Lψ(x) = ψ̄(x)(iγµ∂µ −Meiγ
5ϑ(x))ψ(x)

= ψ̄(x)D(x; 0)ψ(x), (A.1)

where D(x; 0) is the Dirac operator given by

D(x; 0) = iγµ∂µ −Meiγ
5ϑ(x). (A.2)

By a chiral rotation

ψ(x) = e−iαγ5ϑ(x)/2χ(x),

ψ̄(x) = χ̄(x)e−iαγ5ϑ(x)/2, (A.3)

where 0 ≤ α ≤ 1, we reduce the Lagrangian (A.1) to the
form

Lχ(x) = χ̄(x)D(x, α)χ(x). (A.4)

9 After this paper has been completed we became aware of
the paper by Vigman and Larkin [38]. In a 1 + 1-dimensional
chiral invariant model with four-fermion interactions Vigman
and Larkin investigated the problem of the appearance of
a fermion mass. Analyzing the infrared asymptotic behavior
of the one-particle Green function in the approximation of
a large number of fermion fields Vigman and Larkin showed
that fermions become massive as a result of four-fermion in-
teractions. The vanishing of the fermion condensate has been
declared as the absence of spontaneous symmetry breakdown

The Dirac operator D(x;α) reads

D(x;α) = iγµ∂µ +
1
2
αγµγ5∂µϑ(x)

−Mei(1−α)γ5ϑ(x). (A.5)

At α = 1 we obtain the Lagrangian

Lχ(x) = χ̄(x)D(x, 1)χ(x) (A.6)

= χ̄(x)
(
iγµ∂µ +

1
2
γµγ5∂µϑ(x)−M

)
χ(x),

where the term −Mχ̄(x)χ(x) has the meaning of a mass
term of the χ(x) field (see (3.30)).
Due to the chiral rotation (3.30) the fermionic measure

changes as follows:

DψDψ̄ = J [ϑ]DχDχ̄. (A.7)

For the calculation of J [ϑ] we follow Fujikawa’s procedure
[12–17] and introduce eigenfunctions ϕn(x;α) and eigen-
values λn(α) of the Dirac operator D(x;α):

D(x;α)ϕn(x;α) = λn(α)ϕn(x;α). (A.8)

In terms of the eigenfunctions and eigenvalues of the Dirac
operator the Jacobian J [ϑ] is defined by [13,14]

J [ϑ] = exp 2i
∫ 1

0
dαw[ϑ;α], (A.9)

where the functional w[ϑ;α] is given by [13,14]

w[ϑ;α] = lim
ΛF→∞

∑
n

ϕ†
n(x;α)

1
2
γ5ϑ(x)eiλ

2
n/Λ

2
Fϕn(x;α)

= lim
ΛF→∞

1
2

∫
d2xϑ(x)

×
∫

d2k
(2π)2

tr{γ5〈x|eiD2(x;α)/Λ2
F |x〉}. (A.10)

For the calculation of the matrix element 〈x| . . . |x〉 we use
plane waves [12–17] and get

〈x|eiD2(x;α)/Λ2
F |x〉

= exp
{
i
Λ2

F

[
k2 − 2M cos((1− α)ϑ(x))γµkµ

+
1
2
iαγµγνγ5∂µ∂νϑ(x) +M2e2i(1−α)γ5ϑ(x)

+(1− 2α)Mγµγ5∂µϑ(x) cos((1− α)ϑ(x))
+i(1− α)Mγµ∂µϑ(x) sin((1− α)ϑ(x))

−1
4
α2∂µϑ(x)∂µϑ(x)

]}
. (A.11)

Substituting (A.11) in (A.10) we obtain

lim
ΛF→∞

∫
d2k
(2π)2

tr{γ5〈x|eiD2(x;α)/Λ2
F |x〉} (A.12)

=
1
4π
tr
{

−1
2
αγµγν∂µ∂νϑ(x)

− M2 sin(2(1− α)ϑ(x))
}

=
1
4π
[−α∂µ∂µϑ(x)− 2M2 sin(2(1− α)ϑ(x))].
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The functional w[ϑ, α] is given then by

w[ϑ, α] =
1
8π

∫
d2xϑ(x)

[
− α∂µ∂µϑ(x)

−2M2 sin(2(1− α)ϑ(x))
]
. (A.13)

Inserting w[ϑ, α] into (A.9) and integrating over α we get
the Jacobian

J [ϑ] = exp i
∫
d2x

[ 1
8π
∂µϑ(x)∂µϑ(x)

+
M2

4π
(cos 2ϑ(x)− 1)

]
. (A.14)

For the derivation of the first term we have integrated by
parts and dropped the surface contributions.
Our result agrees well with that obtained by Dorn for

the massive Schwinger model [16]. However, Dorn pointed
out that the term proportional to M2 is renormalization-
scheme dependent and it is unambiguously defined if one
insists on vector gauge invariance [13,15].
Since the Thirring model is not vector gauge invariant,

the term proportional to M2 may not be well defined and
may, in principle, be removed by an appropriate regular-
ization. First, let us give physical reasons for the absence
of this term. Indeed, the term in (A.14) proportional to
M2 does not depend on the derivatives ∂µϑ(x). Therefore,
it contributes to the effective potential. However, we have
calculated the effective potential explicitly in (3.5)–(3.21)
and have shown that it does not depend on the ϑ field.
Therefore, one can conclude that the determinant (3.29),

Det(iγµ∂µ −Meiγ
5ϑ), (A.15)

is invariant under global rotations, ϑ(x)→ ϑ(x)+θ, where
θ is an arbitrary constant. On the other hand, after the
chiral rotation (3.30)

Det(iγµ∂µ −Meiγ
5ϑ)

= J [ϑ]Det
(
iγµ∂µ +

1
2
εµνγµ∂νϑ−M

)
, (A.16)

the determinant

Det
(
iγµ∂µ +

1
2
εµνγµ∂νϑ−M

)
, (A.17)

depending only on the gradient of the ϑ field, is also invari-
ant under global rotations, ϑ(x) → ϑ(x) + θ. This proves
that the Jacobian J [ϑ] should not violate invariance un-
der global rotations, ϑ(x) → ϑ(x) + θ, and the presence
of the term proportional to M2 in (A.14) is a problem of
the regularization procedure.
In order to confirm our statement mathematically we

suggest to use for the evaluation of the Jacobian the reg-
ularization procedure expounded in [44]. The functional
w[ϑ;α] is determined as follows:

w[ϑ;α] =
∑
n

ϕ†
n(x;α)

1
2
γ5ϑ(x)ϕn(x;α)

= lim
s→0

∑
n

ϕ†
n(x;α)

1
2
γ5ϑ(x)λ−s

n (α)ϕn(x;α)

= lim
s→0

1
2πi

∮
C

dλλ−s
∫
d2x

1
2
ϑ(x)

×
∫

d2k
(2π)2

ϕ†
n(x;α)γ

5 1
λ− λn(α)

ϕn(x;α)

= lim
s→0

1
2πi

∮
C

dλλ−s
∫
d2x

1
2
ϑ(x)

×
∫

d2k
(2π)2

ϕ†
n(x;α)γ

5 1
λ−D(x;α)

ϕn(x;α)

= lim
s→0

1
2πi

∮
C

dλλ−s
∫
d2x

1
2
ϑ(x)

×
∫

d2k
(2π)2

tr
{

〈x|γ5 1
λ−D(x;α)

|x〉
}
. (A.18)

For plane waves [44] the matrix element is given by

w[ϑ;α] = lim
s→0

1
2πi

∮
C

dλλ−s
∫
d2x

1
2
ϑ(x)

∫
d2k
(2π)2

×tr
{
γ5 1

(λ− S(x;α))− iγ5P (x;α)− (k̂ + Â(x;α))

}
,

(A.19)

where we have denoted

Â(x;α) = γµ
1
2
αεµν∂

νϑ(x),

S(x;α) = M cos((1− α)ϑ(x)),
P (x;α) = M sin((1− α)ϑ(x)). (A.20)

Due to the algebra of Dirac matrices the r.h.s. of (A.19)
can be reduced to the form

w[ϑ;α] = lim
s→0

1
2πi

∮
C

dλλ−s
∫
d2x

∫
d2k
(2π)2

(A.21)

× iMϑ(x) sin((1− α)ϑ(x))
λ2 +M2 − 2λM cos((1− α)ϑ(x))− (k +A(x;α))2 ,

As the integral over k is logarithmically divergent, it does
not depend on a shift of k. Making a shift k+A(x;α)→ k
we arrive at the expression

w[ϑ;α] = lim
s→0

1
2πi

∮
C

dλλ−s
∫
d2x

∫
d2k
(2π)2

(A.22)

× iMϑ(x) sin((1− α)ϑ(x))
λ2 +M2 − 2λM cos((1− α)ϑ(x))− k2

= − lim
s→0

1
2πi

∮
C

dλλ−s
∫
d2x

∫
d2kE
(2π)2

× Mϑ(x) sin((1− α)ϑ(x))
λ2 +M2 − 2λM cos((1− α)ϑ(x)) + k2E

,

where we have passed to Euclidean momentum space.
The chiral Jacobian is now defined by

J [ϑ] = exp
{
2i
∫ 1

0
dαw[ϑ;α]

}
(A.23)
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= exp
{

−2i lim
s→0

1
2πi

∮
C

dλλ−s
∫
d2x

∫
d2kE
(2π)2

×
∫ 1

0
dα

Mϑ(x) sin((1− α)ϑ(x))
λ2 +M2 − 2λM cos((1− α)ϑ(x)) + k2E

}
.

Integrating over α we obtain

J [ϑ] = exp
{

−2i
∫
d2x

∫
d2kE
8π2 lim

s→0

1
2πi

∮
C

dλλ−s−1

× ln
[

k2E + (λ−M)2

k2E + (λ−M)2 − 2λM(cosϑ(x)− 1)
]}

.

(A.24)

Taking the limit s → 0 we get

J [ϑ] = exp
{

−2i
∫
d2x

∫
d2kE
8π2

1
2πi

∮
C

dλ
λ

(A.25)

× ln
[

k2E + (λ−M)2

k2E + (λ−M)2 − 2λM(cosϑ(x)− 1)
]}

.

The integrand over λ has a pole singularity at λ = 0. Since
the contour C is closed around the pole singularities [44],
integrating over λ we obtain

J [ϑ] = 1. (A.26)

Thus, we have shown that the Jacobian of the chiral
rotation transforming the functional determinant (A.15)
into the functional determinant (A.17) gets the unit value
within an appropriate regularization scheme.
Let us further show that the result J [ϑ] = 1 is retained

even if we integrate first over kE. Integrating over kE we
obtain

J [ϑ] = exp
{

−2i
∫
d2x lim

s→0

1
2πi

∮
C

dλλ−s

×
[
M

4π
ln
(
Λ2

E

M2

)
(cosϑ(x)− 1) − M

4π
(cosϑ(x)− 1)

× ln
(
1− 2 λ

M
cosϑ(x)− λ2

M2

)]}
, (A.27)

where ΛE is an ultra-violet cut-off that should be taken in
the limit ΛE → ∞.
Setting s = 0 we recast the Jacobian into the form

J [ϑ] = exp
{

−2i
∫
d2x

1
2πi

∮
C

dλ
[
M

4π
ln
(
Λ2

E

M2

)

×(cosϑ(x)− 1)− M

4π
(cosϑ(x)− 1)

× ln
(
1− 2 λ

M
cosϑ(x) +

λ2

M2

)]}
, (A.28)

The first term is equal to zero due to Cauchy’s theorem.
Thus, the Jacobian is determined by

J [ϑ] = exp
{
i
∫
d2x

M2

2π
(cosϑ(x)− 1)

× 1
2πi

∮
C

dz ln(1− 2z cosϑ(x) + z2)
}
, (A.29)

where we have changed variables λ/M → z. The integral
over z can be calculated as follows:

1
2πi

∮
C

dz ln(1− 2z cosϑ(x) + z2)

=
1
2πi

∮
C

dz ln[(z − eiϑ(x))(z − e−iϑ(x))]

=
1
2πi

∮
C

dz ln(z − eiϑ(x))

+
1
2πi

∮
C

dz ln(z − e−iϑ(x))

=
1
πi

∮
C

dz ln z = 0. (A.30)

The r.h.s. of (A.30) vanishes due to Cauchy’s theorem
which allows one the contraction of the contour C to a
contour of zero length. This leads again to the chiral Ja-
cobian (A.26).

Appendix B. Stability of chirally broken phase
under ρ̃ field fluctuations

Here we discuss the stability of the chirally broken phase
under ρ̃ field fluctuations. For this aim we calculate the
effective Lagrangian of the ρ̃ field and demonstrate the
decoupling of the ρ̃ field.
The evaluation of the effective Lagrangian of the ρ̃ field

runs in the following way. First, we rewrite the functional
determinant (3.5)

Det(iγµ∂µ − σ − iγ5ϕ)

= Det(iγµ∂µ − ρeiϑ)

= Det(eiγ
5ϑ/2(iγµ∂µ + γµAµ − ρ)eiγ

5ϑ/2)
= Det(iγµ∂µ + γµAµ − ρ), (B.1)

where Aµ is given by (3.31)

Aµ(x) =
1
2
εµν∂

νϑ(x). (B.2)

In (B.1) we have used the fact that the Jacobian of the
chiral rotation is equal to unity, see (A.26).
Secondly, we make a shift ρ =M+ ρ̃ and represent the

functional determinant in the r.h.s. of (B.1) as follows:

Det(iγµ∂µ + γµAµ − ρ)
= Det(iγµ∂µ −M + γµAµ)

×Det
(
1− 1

iγµ∂µ −M + γµAµ
ρ̃

)
. (B.3)

The determinant Det(iγµ∂µ − M + γµAµ) describes the
effective Lagrangian of the ϑ field that is given by (3.35).
It is convenient to recast the determinant containing the
ρ̃ field into the form

Det
(
1− 1

iγµ∂µ −M + γµAµ
ρ̃

)
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= Det
(
1− 1

iγµ∂µ −M
ρ̃

+
1

iγµ∂µ −M
γνAν

1
iγµ∂µ −M

ρ̃

− 1
iγµ∂µ −M

γαAα
1

iγµ∂µ −M
γβAβ

× 1
iγµ∂µ −M

ρ̃+ . . .
)
. (B.4)

It is obvious that even if the scale of the ρ̃ field is of
order O(M), the contribution of the ϑ field should be of
orderO(∂µϑ/M). This implies that the ϑ field is decoupled
from the ρ̃ field and (B.4). This allows one to consider the
approximate form for the determinant (B.4)

Det
(
1− 1

iγµ∂µ −M + γµAµ
ρ̃

)

� Det
(
1− 1

iγµ∂µ −M
ρ̃

)
.

The effective Lagrangian of the ρ̃ field is then given by

Leff [ρ̃(x)] = −itr
〈
x

∣∣∣∣ln
(
1− 1

iγµ∂µ −M
ρ̃

)∣∣∣∣x
〉

−M
2g
ρ̃(x)− 1

2g
ρ̃2(x)

−iδ(2)(0) ln
(
1 +

ρ̃(x)
M

)
. (B.5)

The last term comes from the measure of the path
integral in the polar representation [45]: DσDϕ =
DetρDρDϑ = exp{δ(2)(0) ∫ d2x ln ρ(x)}DρDϑ =
exp{δ(2)(0) ∫ d2x ln (M
+ ρ̃(x)

)}Dρ̃Dϑ. This adds a contact term −iδ(2)(0) ln(1+
ρ̃(x)/M), which serves to cancel divergences appearing
from the loop contributions of the ρ̃ field [45,46].
It is obvious that the effective potential of the ρ̃ field

independent of gradients ∂αρ̃(x) is completely defined by
the effective potential (3.21) and can be written as

V [ρ̃(x)] =
1
4π

[
(M2 + 2Mρ̃(x) + ρ̃2(x))

× ln
(
1 + 2

ρ̃(x)
M

+
ρ̃2(x)
M2

)
−(Λ2 +M2 + 2Mρ̃(x) + ρ̃2(x))

× ln
(
1 + 2

Mρ̃(x)
Λ2 +M2 +

ρ̃2(x)
Λ2 +M2

)]
, (B.6)

where we have used (3.22).
In order to understand what kind of rescaling of the ρ̃

field should be carried out it is sufficient to calculate a two-
vertex diagram contribution keeping only the contribution
of the gradient ∂µρ̃(x). It reads

L(2)
eff [∂αρ̃(x)] =

1
8π
∂αρ̃(x)

1∫
0

dα
[

1
M2 + α(1− α)✷

− 1
Λ2 +M2 + α(1− α)✷

]
∂αρ̃(x). (B.7)

Expanding the integrand in powers of 1/M2 and 1/(Λ2 +
M2) we obtain

L(2)
eff [∂αρ̃(x)] =

1
8π

Λ2

M2(Λ2 +M2)
∂αρ̃(x)∂αρ̃(x)

+
1
48π

Λ2(Λ2 + 2M2)
M4(Λ2 +M2)2

×∂α∂β ρ̃(x)∂α∂β ρ̃(x) + . . . (B.8)

In order to get a correct kinetic term we have to rescale
the ρ̃ field

ρ̃(x) =

√
4πM2

(
1 +

M2

Λ2

)
v(x). (B.9)

In terms of the v field the Lagrangian (B.8) reads

L(2)
eff [∂αv(x)] =

1
2
∂αv(x)∂αv(x) +

1
3

1 +
Λ2

2M2

1 +
Λ2

2M2

1
M2

×∂α∂βv(x)∂α∂βv(x) + . . . (B.10)

Hence, higher gradients of the v field would enter in the
form of the ratios O(∂α/M) and can be dropped at leading
order in the 1/M expansion.
Thus, the effective Lagrangian of the rescaled ρ̃ field,

the v field, is defined by

Leff [v(x)] =
1
2
∂αv(x)∂αv(x)− 1

2
M2
vN [v(x)], (B.11)

whereMv = 2M is the mass of the v field. This agrees with
the classical Nambu–Jona–Lasinio model [19–22], where
the mass of the σ meson is twice the mass of the dynamical
fermions. Then, the functional N [v(x)] is equal to

N [v(x)] (B.12)

=
1
8π

{[
1 +

√
16π

(
1 +

M2

Λ2

)
v(x)

+4π
(
1 +

M2

Λ2

)
v2(x)

]
ln

[
1 +

√
16π

(
1 +

M2

Λ2

)
v(x)

+ 4π
(
1 +

M2

Λ2

)
v2(x)

]
−
(
1 +

Λ2

M2

)

×
[
1 +

M2

Λ2

√
16πΛ2

Λ2 +M2 v(x) + 4π
M2

Λ2 v
2(x)

]

× ln
[
1 +

M2

Λ2

√
16πΛ2

Λ2 +M2 v(x) + 4π
M2

Λ2 v
2(x)

]}
.

Expanding the functional N [v(x)] in powers of v(x)
around v(x) = 0 we obtain

N [v(x)] = v2(x) +O(v3(x)). (B.13)
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Since for the derivation of effective Lagrangians the
ratio M2/Λ2 is fixed at Λ → ∞, the functional
exp

{−(i/2)M2
v

∫
d2xN [v(x)]

}
reduces in the Λ → ∞ limit

to the functional δ function δ[v(x)]:

exp
{

− i
2
M2
v

∫
d2xN [v(x)]

}
Λ→∞−→

∏
x

δ[v(x)]. (B.14)

Thus, the generating functional of Green functions of the
v field

Z[q] =
∫

Dv exp
{
i
2

∫
d2x

×
[
∂αv(x)∂αv(x)−M2

vN [v(x)]

−iδ(2)(0) ln
(
1 +

√
4π

(
1 +

M2

Λ2

)
v(x)

)]

+i
∫
d2xq(x)v(x)

}
(B.15)

reduces in the Λ → ∞ limit to the form

Z[q] =
∫

Dvδ[v] exp
{
i
2

∫
d2x∂αv(x)∂αv(x)

}
. (B.16)

The appearance of the δ functional, δ[v], is evidence that
the classical value of the v field is zero, vcl(x) = 0.
The generating functional (B.16) does not depend on

the external source q(x). This confirms the decoupling of
the v field that corresponds to the decoupling of the ρ̃ field.
Thereby, no contributions can appear due to fluctuations
of the ρ field around the minimum of the effective potential
(3.21). This implies the stability of the chirally broken
phase and the non-perturbative vacuum described by the
effective potential (3.21) under fluctuations of the ρ field.
We would like to accentuate that the decoupling of the ρ̃
field agrees fully with the decoupling theorem derived by
Appelquist and Carazzone [41].

Appendix C. Solutions of equations of motion
(6.45) and (6.46) for the ansatz (6.55)

It is easy to show that for the ansatz (6.55) the equations
of motion (6.45) reduce to the form

−
(
∂

∂t
+

∂

∂x

)
ξ(x, t) =Me−ω,(

∂

∂t
− ∂

∂x

)
η(x, t) =Me+ω, (C.1)

whereas the equations of motion become split into a set
of first order differential equations

− ∂

∂t
ξ(x, t) =

M

g

(
+
a− b

2
e+ω +

a+ b
2
e−ω

)
,

− ∂

∂x
ξ(x, t) =

M

g

(
−a− b

2
e+ω +

a+ b
2
e−ω

)
,

∂

∂t
η(x, t) =

M

g

(
+
a+ b
2
e+ω +

a− b

2
e−ω

)
,

∂

∂x
η(x, t) =

M

g

(
−a+ b

2
e+ω +

a− b

2
e−ω

)
. (C.2)

Due to the relation a + b = g the equations of (C.1) are
consistent with (C.2). Using the relations a+b = g and a−
b = 1/c (C.1) and (C.2) can be rewritten in the equivalent
form (

∂

∂t
− ∂

∂x

)
ξ(x, t) = −M

gc
e+ω,(

∂

∂t
+

∂

∂x

)
ξ(x, t) = −Me−ω (C.3)

and (
∂

∂t
− ∂

∂x

)
η(x, t) = +Me+ω,(

∂

∂t
+

∂

∂x

)
η(x, t) = −M

gc
e−ω.

The solutions of the differential equations (C.4) and (C.4)
read

ξ(x, t) = ξ0 − M

gc
e+ω(t− x)−Me−ω(t+ x),

η(x, t) = η0 +Me+ω(t− x)− M

gc
e−ω(t+ x), (C.4)

where ξ0 and η0 are integration constants and c is the
Schwinger term (6.66).
For ϑ(x, t) we obtain

ϑ(x, t) =
1
β
[ξ(x, t) + η(x, t)]

=
ξ0 + η0
β

+
M

β

(
1− 1

gc

)
e+ω(t− x)

−M
β

(
1 +

1
gc

)
e−ω(t+ x), (C.5)

where β is defined by (4.5).
Thus we have confirmed the consistency of the equa-

tions of motion (6.45) and (6.46) and their consistency
with the ansatz (6.55).
Notice that the factors e±ω can be removed by an ap-

propriate Lorentz boost. This yields

ξ(x, t) = ξ0 − M

gc
(t− x)−M(t+ x)

= ξ0 −M

(
1 +

1
gc

)
t−M

(
1− 1

gc

)
x,

η(x, t) = η0 +M(t− x)− M

gc
(t+ x)

= η0 +M
(
1− 1

gc

)
t−M

(
1 +

1
gc

)
x,
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ϑ(x, t) =
ξ0 + η0
β

+
M

β

(
1− 1

gc

)
(t− x)

−M
β

(
1 +

1
gc

)
(t+ x)

=
ξ0 + η0
β

− 2M
βgc

t− 2M
β
x. (C.6)

This simplifies the solutions following from the ansatz
(6.55) describing a helical wave as discussed in [1].

Appendix D. Quantum field theory
of free massive and massless fermion fields
in 1 + 1-dimensional space-time

The main aim of this appendix is to specify the definitions
of massive and massless fermion fields in 1+1-dimensional
space-time.
Let ψ(x) be a free massive fermion field with mass m

obeying the Dirac equation of motion

(iγµ∂µ −m)ψ(x) = 0. (D.1)

The quantization of field ψ(x) goes via a solution of (D.1)
in terms of plane waves:

ψ(x) =
∫ ∞

−∞

dp1√
2π

1√
2p0

× [
u(p0, p1)a(p1)e−ip·x + v(p0, p1)b†(p1)eip·x

]
,

ψ̄(x) = ψ†(x)γ0

=
∫ ∞

−∞

dp1√
2π

1√
2p0

[
ū(p0, p1)a†(p1)eip·x

+v̄(p0, p1)b(p1)e−ip·x] , (D.2)

where p · x = p0x0 − ip1x1. The creation a†(p1)(b†(p1))
and annihilation a(p1)(b(p1)) operators of fermions (anti-
fermions) with momentum p1 and energy p0 = ((p1)2 +
m2)1/2 obey the anti-commutation relations

{a(p1), a†(q1)} = {b(p1), b†(q1)} = δ(p1 − q1),

{a(p1), a(q1)} = {a†(p1), a†(q1)} = {b(p1), b(q1)}
= {b†(p1), b†(q1)} = 0. (D.3)

The wave functions u(p0, p1) and v(p0, p1) = u(−p0,−p1)
are the solutions of the Dirac equation in the momentum
representation for positive and negative energies, respec-
tively. They are defined by

u(p0, p1) =

(√
p0 + p1√
p0 − p1

)
,

ū(p0, p1) = (
√
p0 − p1,

√
p0 + p1),

v(p0, p1) =

( √
p0 + p1

−
√
p0 − p1

)
,

v̄(p0, p1) = (−
√
p0 − p1,

√
p0 + p1) (D.4)

at p0 = ((p1)2 +m2)1/2 and normalized to

u†(p0, p1)u(p0, p1) = v†(p0, p1)v(p0, p1) = 2p0,
ū(p0, p1)u(p0, p1) = −v̄(p0, p1)v(p0, p1) = 2m,
ū(p0, p1)v(p0, p1) = v̄(p0, p1)u(p0, p1) = 0. (D.5)

The functions u(p0, p1) and v(p0, p1) satisfy the following
matrix relations:

u(p0, p1)ū(p0, p1)

=
(√

p0 + p1√
p0 − p1

)
(
√
p0 − p1,

√
p0 + p1)

=

(√
(p0)2 − (p1)2 p0 + p1

p0 − p1
√
(p0)2 − (p1)2

)

=

(
m p0 + p1

p0 − p1 m

)

= γ0p0 − γ1p1 +m = p̂+m,
v(p0, p1)v̄(p0, p1)

=
( √

p0 + p1

−
√
p0 − p1

)
(−
√
p0 − p1,

√
p0 + p1)

=

(
−√(p0)2 − (p1)2 p0 + p1

p0 − p1 −√(p0)2 − (p1)2
)

=

(
−m p0 + p1

p0 − p1 −m

)

= γ0p0 − γ1p1 −m = p̂−m. (D.6)

The causal Green function of a free massive fermion field
SF(x− y) is defined by

SF(x− y) = i〈0|T (ψ(x)ψ̄(y))|0〉
= iθ(x0 − y0)

∫ ∞

−∞

dp1

2π
γ0p0 − γ1p1 +m

2p0

×e−ip0(x0−y0)+ip1(x1−y1)

−iθ(y0 − x0)
∫ ∞

−∞

dp1

2π
γ0p0 − γ1p1 −m

2p0

×e−ip0(y0−x0)+ip1(y1−x1), (D.7)

where θ(z0) is the Heaviside function.
Using the integral representation for the Heaviside

function [47]

θ(z0) =
∫ ∞

−∞

dq0

2πi
eiq

0z0

q0 − i0 (D.8)

we recast the r.h.s. of (D.7) into the form

SF(x− y) = i〈0|T (ψ(x)ψ̄(y))|0〉
=
∫ ∞

−∞

dp1

2π

∫ ∞

−∞

dq0

2π
γ0p0 − γ1p1 +m
2p0(q0 − i0)

×ei(q0−p0)(x0−y0)+ip1(x1−y1)
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−
∫ ∞

−∞

dp1

2π

∫ ∞

−∞

dq0

2π
γ0p0 − γ1p1 −m

2p0(q0 − i0)
×e−i(q0−p0)(x0−y0)−ip1(x1−y1)

=
∫ ∞

−∞

dp1

2π

∫ ∞

−∞

dq0

2π
γ0p0 − γ1p1 +m
2p0(p0 − q0 − i0)

×e−iq0(x0−y0)+ip1(x1−y1)

−
∫ ∞

−∞

dp1

2π

∫ ∞

−∞

dq0

2π
γ0p0 − γ1p1 −m

2p0(p0 + q0 − i0)
×e−iq0(x0−y0)−ip1(x1−y1)

=
∫ ∞

−∞

d2p
(2π)2

m+ p̂
m2 − p2 − i0

×e−ip·(x−y). (D.9)

A direct calculation of the integral over p yields

SF(x− y) =
m

2π
−(x̂− ŷ)√−(x− y)2

K1

(
m
√

−(x− y)2
)

+i
m

2π
K0

(
m
√

−(x− y)2
)
. (D.10)

For the product (−i)γµSF(x− y)γµ we get

(−i)γµSF(x− y)γµ =
m

2π
K0

(
m
√

−(x− y)2
)
. (D.11)

At (x − y) → 0 this agrees with our calculation of
γµ〈0|ψ(x, t)ψ̄(x, t)|0〉γµ given by (6.14) and (6.15).
The solution of a massless fermion field can be ob-

tained from the solution (D.2) in the limit m → 0. The
functions u(p0, p1) and v(p0, p1) are defined by (D.4) at
p0 = |p1|.
We would like to emphasize that our solution for a

free massless fermion field has a phase convention different
from that used by Thirring [3] and Klaiber [5] who set

u(p0, p) = v(p0, p)

=

(√
p0 + p√
p0 − p

)
=
√
2p0

(
θ(+p)
θ(−p)

)
, (D.12)

where θ(±p) are Heaviside functions.
The causal Green function SF(x−y) of a free massless

fermion field is defined by

SF(x− y) = i〈0|T (ψ(x)ψ̄(y)|0〉
= iθ(x0 − y0)〈0|ψ(x)ψ̄(y)|0〉

−iθ(y0 − x0)〈0|ψ̄T y)ψT (x)|0〉
= iθ(x0 − y0)

∫ ∞

−∞

dp1

2π
1
2p0

[u(p0, p1)ū(p0, p1)]

×e−ip0(x0−y0)+ip1(x1−y1)

−iθ(y0 − x0)
∫ ∞

−∞

dp1

2π
1
2p0

[v(p0, p1)v̄(p0, p1)]

×e−ip0(x0−y0)+ip1(x1−y1)

= iθ(x0 − y0)
∫ ∞

−∞

dp1

2π
γ0p0 − γ1p1

2p0

×e−ip0(x0−y0)+ip1(x1−y1)

−iθ(y0 − x0)
∫ ∞

−∞

dp1

2π
γ0p0 − γ1p1

2p0

×e−ip0(y0−x0)+ip1(y1−x1)

= iε(x0 − y0)(x̂− ŷ)δ((x− y)2)

+
1
2π

x̂− ŷ

(x− y)2

=
1
2π

x̂− ŷ

(x− y)2 − i0 · ε(x0 − y0)
, (D.13)

where ε(x0 − y0) is a sign function. This is a well-known
expression for the causal Green function of a free massless
fermion field in 1+1-dimensional space-time [48] (see also
[47]).
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